期刊文献+

基于物联网技术的海上风电运维监测与故障诊断研究

Research on Operation and Maintenance Monitoring and Fault Diagnosis of Offshore Wind Power Based on Internet of Things Technology
下载PDF
导出
摘要 为提升海上风电设备的智能监控与故障诊断能力,提出一种基于物联网技术的解决方案。该方案采用云边协同架构,通过在风电机组中部署多种传感器,实时采集关键数据。通过通信模块,实现异构数据聚合与云平台集成。在云平台上利用机器学习等技术,建立故障自动识别与诊断模型。结果表明,该方法能有效提高监测精度与故障诊断效率,降低海上风电的运行维护成本。 To enhance the capabilities of intelligent monitoring and fault diagnosis for offshore wind power equipment,this study presents a solution based on Internet of Things technology.The proposed system adopts a cloud-edge collaborative architecture,deploying multiple sensors in wind turbine assemblies to collect key data in real-time.By employing communication modules,it accomplishes the aggregation of heterogeneous data and integration with cloud platforms.Machine learning and other advanced technologies are utilized on the cloud platform to establish an automatic fault identification and diagnostic model.The results indicate that this method significantly improves monitoring precision and fault diagnostic efficiency while reducing the operational and maintenance costs of offshore wind power.
作者 李子航 曹柏寒 高敏 马佳星 LI Zihang;CAO Baihan;GAO Min;MA Jiaxing(Bohai Petroleum Shipping Construction Engineering Co.,Ltd.,Tianjin 300456,China)
出处 《自动化应用》 2024年第12期264-266,共3页 Automation Application
基金 中海油能源发展股份有限公司重大专项“海上风电高效运维关键技术研究”(HFZDZX-JN2021-01-04)。
关键词 海上风电 云边协同 监测 故障诊断 offshore wind power cloud-edge collaboration monitoring fault diagnosis
  • 相关文献

参考文献4

二级参考文献75

共引文献178

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部