摘要
视频浓缩是通过图像处理和机器视觉等手段来完成从长时间的监控视频中提取到有价值的内容信息。在视频监控领域中,仅通过人力进行视频的筛查会造成效率低下以及漏报和误报的问题。文章通过相邻帧内容检测方法,运动片段检测方法配合Harris特征点提取算法和SIFT特征点提取算法实现图像特征点配准。提出双模融合的背景建模与内容检测方法,并且采用基于2D距离的运动内容跟踪方法以及GrabCut抠图算法进行了对视频浓缩算法的设计与实现。
Surveillance video is to extract valuable content information from long-term surveillance videos through image processing and machine vision.In the field of video surveillance,only manual video screening will cause inefficiency and problems of under-reporting and false-reporting.The article uses the adjacent frame content detection method,the motion segment detection method to cooperate with the Harris feature point extraction algorithm and the SIFT feature point extraction algorithm to achieve image feature point registration.A dual-mode fusion background modeling and content detection method is proposed,and a 2D dis-tance-based motion content tracking method and GrabCut matting algorithm are used to design and implement the video concentration algorithm.
作者
周冬梅
余洪嘉
ZHOU Dongmei;YU Hongjia(School of Mechanical and Electrical Engineering,Chengdu University of Technology,Chengdu 610059)
出处
《计算机与数字工程》
2024年第4期1169-1172,共4页
Computer & Digital Engineering
基金
四川省科技厅重点研发项目“视频监控中运动目标图像分割关键技术研究”(编号:18ZDYF3425)资助。
关键词
视频浓缩
时间空间
背景建模
运动检测
双模融合
video enrichment
time and space
background modeling
motion detection
dual mode fusion