期刊文献+

基于自适应遗传优化k-means算法的高校学情分析

Analysis of College Student Situation based on Adaptive Genetic Optimization K-Means Algorithm
下载PDF
导出
摘要 为对高校学生学习过程与学习行为进行深度分析,帮助教师实现精准化教学,本文基于某高校计算机及相关专业学生数字逻辑课程学习过程相关数据,探索一种自适应策略的遗传优化k-means算法来进行高校学情分析。首先针对k-means算法存在的不足,提出通过遗传算法的交叉操作和变异操作获取最优解,同时通过自适应策略动态地调整交叉概率和变异概率,避免过早产生次优解;其次对学生数字逻辑学习过程相关数据执行自适应策略的遗传优化k-means算法;最后对算法执行结果进行分析。结果表明,本文研究的基于自适应策略的遗传优化k-means算法能够获得更加有效的分析结果。 In order to conduct in-depth analysis of the learning process and behavior of college students and help teachers achieve precise teaching,this article explores an adaptive strategy of genetic optimization k-means algorithm based on data related to the learning process of the digital logic course for computer and related majors in a certain university for college student situation analysis.Firstly,according to the shortcomings of the k-means algorithm,it is proposed to obtain the optimal solution through genetic algorithm's crossover and mutation operations.At the same time,an adaptive strategy is used to dynamically adjust the crossover and mutation probabilities to avoid premature generation of suboptimal solutions.Then,execute an adaptive genetic optimization k-means algorithm on the relevant data of the students'learning process of digital logic.Finally,analyze the execution results of the algorithm.The analysis results indicate that the genetic optimization k-means algorithm based on adaptive strategy studied in this article can obtain more effective analysis results.
作者 张露露 ZHANG Luu(School of Big Data and Artificial Intelligence,Ma'anshan University,Ma'anshan 243100)
出处 《吉林农业科技学院学报》 2024年第3期17-20,68,共5页 Journal of Jilin Agricultural Science and Technology University
基金 安徽省质量工程项目(2022cxtd157,2021sx155)。
关键词 学情分析 K-MEANS算法 遗传优化 自适应 analysis of college student situation k-means algorithm genetic optimization adaptive
  • 相关文献

参考文献8

二级参考文献85

  • 1王琪,靳莹.中等教育学段学情分析研究述评[J].教育理论与实践,2023,43(2):54-57. 被引量:8
  • 2王湘蓉,孙智明,王楠,周彩丽,赵琼花,袁嘉妮.中国职业教育发展大型问卷调查报告[J].教育家,2021(17):7-23. 被引量:56
  • 3张应强,姜远谋.超大规模的高等教育普及化:时代背景、现实挑战和道路选择[J].高等教育研究,2022,43(8):1-28. 被引量:47
  • 4高战国.基于数据挖掘的多元化教学评价系统设计与实现[D].长春:吉林大学,2010.
  • 5Cláudia A.Acquiring background knowledge for intelligent tutoring systems[C]//Educational Data Mining 2008.C6rdoba:Baker Ryan,Tiffany Barnes,Beck Joseph,2008:18 -27.
  • 6Big Data for Development: Challenges & Opportunities [DB/OL]. [2012-05-01]. http://www.unglobalpulse.org/sites/default/files/Big- DataforDevelopment-UNGlobalPulseJune2012.pdf.
  • 7Big Data Research and Development Initiative[DB/OL].[2012-03-29] . http://www.whitehouse.gov/sites/defaultlfiles/microsites/ostp/big_data_ press_release_final_2.pdf.
  • 8Enhancing Teaching and Learning through Educational Data Mining and Learning Analyties [DB/OL]. [2012-10-12]. http:// www.ed.gov/edblogs/technology/files/2012/03/edm-la-brief.pdf.
  • 9Big data-Wikipedia, the free encyclopedia [EB/OL].[2013-09-23]. http://en.wikipedia.org/wiki/Big_data.
  • 10Barwick H. The "four Vs" of Big Data. Implementing Information In- fi'astructure Symposium[EB/OL]. [2012-10-02]. http://www.computer- world.com.au/article/396198/iiis four vs_big_data/.

共引文献523

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部