期刊文献+

基于RRT的机械臂路径规划改进算法

Improved algorithm for robotic arm path planning based on RRT
下载PDF
导出
摘要 针对快速随机树(Rapidly-exploring Random Trees,RRT)算法在复杂环境下规划效率低的问题,提出一种基于RRT的机械臂路径规划改进算法。首先,在初始采样时应用角度约束采样策略限制采样区域,提升采样质量。然后,在扩展节点时融合人工势场法的思想,设定动态步长加快算法的收敛,提升算法在障碍物空间的探索效率,当算法陷入局部极小值时,采用节点拒绝策略快速脱离。最后,将规划路径进行简化处理,并利用B样条曲线平滑拐点提高路径质量。仿真结果表明,改进算法相比传统RRT算法,扩展更具导向性,收敛速度更快,可以有效避免局部极小值。 In order to solve the problem of low planning efficiency of rapidly-exploring random trees(RRT)algorithm in complex environments,an improved algorithm for robotic arm path planning based on RRT was proposed.Firstly,the angle constraint sampling strategy is applied to limit the sampling area during the initial sampling to improve the sampling quality.Then,the idea of artificial potential field method is integrated when expanding nodes,and the dynamic step size is set to accelerate the convergence of the algorithm,so as to improve the exploration efficiency of the algorithm in obstacle space.When the algorithm falls into a local minimum,a node rejection strategy is adopted for quick detachment.Finally,the planned path is simplified,and the B-spline curve is used to smooth the inflection point to improve the path quality.Simulation results show that compared with the traditional RRT algorithm,the improved algorithm has more expansion orientation and faster convergence speed,which can effectively avoid the local minima.
作者 赵广元 韩雪松 黄楠 ZHAO Guangyuan;HAN Xuesong;HUANG Nan(School of Automation,Xi’an University of Posts and Telecommunications,Xi’an 710121,China)
出处 《西安邮电大学学报》 2024年第3期65-74,共10页 Journal of Xi’an University of Posts and Telecommunications
基金 中国学位与研究生教育学会课题(2020MSA419)。
关键词 路径规划 快速搜索随机树算法 机械臂 混合采样 人工势场法 path planning RRT algorithm robotic arm mixed sampling artificial potential field
  • 相关文献

参考文献9

二级参考文献60

  • 1陈靖辉,崔岩,刘兴林,李育强.基于改进A^*算法的移动机器人路径规划方法[J].计算机应用研究,2020,37(S01):118-119. 被引量:16
  • 2刘磊,向平,王永骥,俞辉.非完整约束下的轮式移动机器人轨迹跟踪[J].清华大学学报(自然科学版),2007,47(z2):1884-1889. 被引量:20
  • 3李擎,张伟,尹怡欣,王志良.一种用于最优路径规划的改进遗传算法[J].信息与控制,2006,35(4):444-447. 被引量:18
  • 4Arkin R C. Behavior-based robotics[M]. 1st ed. Cambridge, USA: MIT Press, 1998: 1-3.
  • 5Lozano-Perez T. Spatial planning: A configuration space approach[J]. IEEE Transactions on Computers, 1983, 32(2): 108- 120.
  • 6LaValle S M. Rapidly-exploring random trees: A new tool for path planning[R]. Iowa, USA: Computer Science Department, Iowa State University, 1998.
  • 7LaValle S M, Kuffner J J. Randomized kinodynamic planning[J]. International Journal of Robotics Research, 2001, 20(5): 378-400.
  • 8Kuffner J J, LaValle S M. RRT-connect: An efficient approach to single-query path planning[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2000: 995-1001.
  • 9Rodriguez S, Tang X Y, Lien J M. An obstacle-based rapidlyexploring random tree[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2006: 895-900.
  • 10Szadeczky-Kardoss E, Kiss B. Extension of the rapidly exploring random tree algorithm with key configurations for nonholonomic motion planning[C]//IEEE International Conference on Mechatronics. Piscataway, NJ, USA: IEEE, 2006: 363-368.

共引文献228

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部