期刊文献+

基于二阶远离步的积极集最小闭包球算法

An active-set minimum enclosing ball algorithm based on second-order away-step
下载PDF
导出
摘要 对高维大规模数据集的近似最小闭包球(Minimum Enclosing Ball,MEB)问题进行研究,提出一种基于二阶远离步的积极集最小闭包球算法。首先,基于对偶目标函数的二阶泰勒展开选择远离步指标,给出求解MEB问题的二阶远离步算法,并计算算法的多项式时间复杂度。然后,进一步设计一个改进的积极集算法计算高维大规模数据集的近似MEB,算法每次迭代选取距离球心较远的数据点构造积极集,并调用二阶远离步算法求解。数值实验结果表明,所提算法能够快速有效地处理高维大规模数据集的高精度近似MEB问题。 The approximate minimum enclosing ball(MEB)problem of high-dimensional large-scale data sets is studied.An active-set MEB algorithm based on the second-order away-step is proposed.Firstly,the away-step index is selected based on the second-order Taylor expansion of the dual objective function,the second-order away-step algorithm for solving the MEB problem is presented.The polynomial time complexity of the proposed algorithm is established.Then an improved fast active-set algorithm is further designed to compute the approximate MEB for high-dimensional large-scale datasets.The algorithm selects data points far from the center of the ball to construct an active-set at each iteration,and calls the second-order away-step algorithm.Numerical experiments result show that the proposed algorithm can quickly and efficiently deal with the high-precision approximate MEB problem of the high-dimensional large-scale datasets.
作者 丛伟杰 安梦园 李承臻 CONG Weijie;AN Mengyuan;LI Chengzhen(School of Science,Xi’an University of Posts and Telecommunications,Xi’an 710121,China;School of Computer Science and Technology,Xi’an University of Posts and Telecommunications,Xi’an 710121,China)
出处 《西安邮电大学学报》 2024年第3期83-89,共7页 Journal of Xi’an University of Posts and Telecommunications
基金 国家自然科学基金项目(12102341) 陕西省自然科学基础研究计划项目(2024JC-YBQN-0052)。
关键词 机器学习 最小闭包球 高维大规模数据集 远离步 积极集算法 machine learning minimum enclosing ball high-dimensional large-scale datasets away-step active-set algorithm
  • 相关文献

参考文献7

二级参考文献60

  • 1来疆亮,王守觉.最小球覆盖几何算法及其在模式识别中的应用[J].模式识别与人工智能,2006,19(2):271-276. 被引量:8
  • 2Dai W, Yang Q, Xue G, et al. Boostimg for transerfer learning [C]//Proceedings of the 24 International Conference on Ma-chine Learning. USA Corvasllls ACM, 2007 193-200.
  • 3Pan S J, Yang Q. A survey on transfer learning [J]. IEEE Transa- ctions on Knowledge and Data Engineering, 2009,22 (10):1345- 1359.
  • 4Blitzer J,McDonald R,Percira F. Domain adaptation with struc- tural correspondence learning[C] // Proeessings of the 2006 Conference on Empirical Methods in Natural Language Proces- sing. PA USA: SIAM, 2006 : 120-128.
  • 5Hal Daum'e III. Daniel Mareu Domain adaptation for statistical classifiers[J-]. Journal of Artificial Intelligence Research, 2006, 26(4) :101-126.
  • 6Blitzer J,Crammer K,Kulesza A,et al. Learning bounds for do- main adaptation[C]//Proceedings of the 21st Annual Confe- rence on Neural Information Processing Systems. Cambridge, MAt MIT,2008: 129-136.
  • 7Dai W, Xue G, Yang Q, et al. Co-clustering based classification for out-of-domain documents [C]// Proceedings of 13th ACM SIGKDD. New York: ACM, 2007 : 210-219.
  • 8Tax D M J,Duin R P W. Support vector domain description[J]. Pattern Recognition Letters, 1999,20(11) : 1191-1199.
  • 9Tsang I, Kwok J, Zurada J. Generlized core vector machines [J]. IEEE Transactions on Neural Networks, 2006, 17 ( 5 ) : 1126- 1139.
  • 10Tsang I, Kwok J, Cheung P. Core vector machines: Fast SVM training on very large data sets [J-]. Journal of Machine Learning Research, 2005,6 (4) : 363-392.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部