摘要
为了解决现有图书馆架序识别方法存在的不足,设计基于深度强化学习的图书馆架序智能识别方法。利用深度强化学习架构,确定架序识别规则,计算图书馆架序参数,识别图书馆架序中书号字符数据,确定书号字符识别系数的取值范围,实现基于深度强化学习的图书馆架序智能识别。实验结果表明,应用文中提出的识别方法,可使图书资源排列架序与规定架序保持一致,识别准确度较高,有效解决了图书馆管理中的图书乱架问题,具有较好的应用性能。
In order to address the shortcomings of existing library shelf order recognition methods,an intelligent library shelf order recognition method based on deep reinforcement learning is designed.Using a deep reinforcement learning architecture,determine shelf order recognition rules,calculate library shelf order parameters,identify book number character data in the library shelf order,determine the range of book number character recognition coefficients,and achieve intelligent library shelf order recognition based on deep reinforcement learning.The experimental results show that the application of the recognition method proposed in this article can make the arrangement of book resources consistent with the specified shelf order,with high recognition accuracy,effectively solving the problem of book disorder in library management,and has good application performance.
作者
翟小静
ZHAI Xiaojing(Xianyang Normal University,Xianyang 712099,China)
出处
《电子设计工程》
2024年第14期55-58,63,共5页
Electronic Design Engineering
基金
咸阳师范学院专项科研基金项目(12xsyk101)。
关键词
深度强化学习
图书馆架序
智能识别
信息字符
架序参数
书号字符
deep reinforcement learning
library shelf order
intelligent identification
information cha-racters
frame sequence parameters
book number characters