期刊文献+

基于改进弹性网络回归的电容式电压互感器误差状态预测

Error state Prediction of Capacitive Voltage Transformer Based on Improved Elastic Network Regression
下载PDF
导出
摘要 为了探索各因素对电容式电压互感器(Capacitance Type Voltage Transformer,CVT)误差状态的影响程度,提高CVT误差状态预测的精度,提出一种基于改进弹性网络回归的CVT误差状态预测方法。首先,通过拉依达准则和K-最近邻填充方法对原始数据进行预处理;然后,构建改进的弹性网络回归模型,根据每个影响因素的皮尔逊相关系数在弹性网络回归模型中给与不同的惩罚权重,计算出该模型的最优系数;最后,利用具有最优系数的回归模型对CVT误差状态进行预测。结果表明所提方法具有更高的预测精度。 The error state of capacitive voltage transformer(CVT)is coupled by temperature and humidity,electric field,secondary load and other factors,which leads to poor stability and reliability,and then affects the fairness of power trade settlement and the safe operation level of power grid.In order to explore the influence of various factors on CVT error state and improve the accuracy of CVT error state prediction,a method of CVT error state prediction based on improved elastic network regression was proposed.Firstly,the raw data are preprocessed by the Laida criterion and K-nearest neighbor filling method.Then,an improved elastic network regression model is constructed,and different penalty weights are given to the elastic network regression model according to the Pearson correlation coefficient of each influencing factor,and the optimal coefficient of the model is calculated.Finally,the regression model with optimal coefficient is used to predict the error state of CVT.The ablation experiment and comparison experiment with the data collected from Xiashi Substation in Taizhou show that the proposed method has higher prediction accuracy.
作者 姜瀚书 李雨田 刘著 吴广昊 崔涛 JIANG Hanshu;LI Yutian;LIU Zhu;WU Guanghao;CUI Tao(State Grid Jilin Electric Power Company Limited Marketing Service Center,Changchun 130062,China)
出处 《吉林电力》 2024年第3期8-12,共5页 Jilin Electric Power
关键词 弹性网络回归 电容式电压互感器 误差状态 elastic network regression Pearson correlation coefficient capacitive voltage transformer error state prediction
  • 相关文献

参考文献4

二级参考文献46

  • 1邓带雨,李坚,张真源,滕予非,黄琦.基于EEMD-GRU-MLR的短期电力负荷预测[J].电网技术,2020,44(2):593-602. 被引量:135
  • 2Zhang Shichao, Jin Zhi,Zhu Xiaofeng. Missing data imputation by uti- lizing information within incomplete instances [ J ]. Journal of Sys- tems and Software ,2011,84 ( 3 ) :452-459.
  • 3Zhang Chengqi, Qin Yongsong, Zhu Xiaofeng, et al. Clustering-based missing value imputation for data preprocessing [ C ]//IEEE Interna- tional Conference on Industrial Informatics. 2006:108i-1086.
  • 4Zhang Shichao, Jin Zhi, Zhu Xiaofeng, et al. Missing data analysis : a kernel-based muhi-imputation approach [ M ]//Transactions on Com- putational Science 1[. Berlin : Springer,2009 : 122-142.
  • 5Zhang Shichao, Qin Yongsong, Zhu Xiaofeng, et al. Optimized parame- ters for missing data imputation [ C ]//Proc of the 9th Pacific Rim In- ternational Conference on Artieial Intelligence. 2006 : 1010-1016.
  • 6Zhang Chengqi, Zhu Xiaofeng, Zhang Jilian,et al. GBKII : an imputa- tion method for missing values [ C ]//Proc of the llth Pacific-Asia Conference. 2007 1080-1087.
  • 7Cover T, Hart P. Nearest neighbor pattern classification [ J ]. IEEE Trans on Information Theory,1967,13( 1 ) :21-27.
  • 8Lall U, Sharma A. A nearest neighbor bootstrap for resampling hydro- logic time series [ J ]. Water Resources Research, 1996,32 ( 3 ) : 679- 693.
  • 9Zhu Xiaofeng, Huang Zi, Cheng Hong, et al. Sparse hashing for fast multimedia search[J]. ACM Trans on Information System,2013, 31 (2) :1-24.
  • 10Zhu Xiaofeng, Huang Zi, Shen Hengtao, et al. Dimensionality reduc- tion by mixed kernel canonical correlation analysis[ J]. Pattern Re- cognition ,2012,45 ( 8 ) :3003-3016.

共引文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部