期刊文献+

基于“电力+民政”大数据的精准帮扶研究与应用

Research and Application of Precise Assistance Based on Big Data of"Electricity+Civil Affairs"
下载PDF
导出
摘要 基于滑动时间窗口的集成学习算法,对全省40多万社会救助对象的日常用电数据进行深度挖掘分析,并按不同地市分别建模,实现了困难群众主动识别,让更多的困难群众“应享尽享”;根据民政部门提供的客户标签,构建不同的帮扶场景,应用多场景时序异常检测算法,对不同类型的困难群众实施分类管理预警机制,为政府完善帮扶工作、保障特殊用电、守护生命安全发挥数据创新应用价值,提供个性化用电关怀。 This project is based on a sliding time window ensemble learning algorithm,which deeply mines and analyzes the daily electricity consumption data of over 400000 social assistance recipients in Zhejiang province,and models them separately according to different cities,achieving active identification of disadvantaged groups and allowing more disadvantaged groups to fully enjoy the benefits.Based on the user tags provided by the Civil affairs department,construct different assistance scenarios,and apply multi scenario temporal anomaly detection algorithms to implement classification management and early warning mechanisms for different types of disadvantaged groups.This will provide personalized electricity care for the government to improve assistance work,ensure special electricity use,and safeguard life safety by leveraging innovative data application value.
作者 赵志扬 程叙鹏 林少娃 何妍妍 陈奕汝 吴秀英 ZHAO Zhiyang;CHENG Xupeng;LIN Shaowa;HE Yanyan;CHEN Yiru;WU Xiuying(State Grid ZheJiang Marketing Service Center,Zhejiang Hangzhou 310000,China)
出处 《农村电气化》 2024年第6期5-10,共6页 Rural Electrification
关键词 社会救助对象 精准识别 分类预警 精准帮扶 social assistance recipients precise identification classification warning precise assistance
  • 相关文献

参考文献2

二级参考文献24

  • 1刘晶茹,Glen P.Peters,王如松,杨建新.综合生命周期分析在可持续消费研究中的应用[J].生态学报,2007,27(12):5331-5336. 被引量:26
  • 2H. Nie, R. Kemp. Index decomposition analysis of residential energy consumption in China: 2002 - 2010 [ J ]. Applied Energy, 2014, 121:10 - 19.
  • 3Yan Sun, Lifang Feng. Influence of psychological, family and contextual factors on residential energy use behaviour: An empirical study of China[J]. Energy Procedia, 2011, 5:910-915.
  • 4Annika Carlsson-Kanyama, Anna-Lisa Lind6n. Energy efficiency in residences-- Challenges for women and men in the North [ J ]. Energy Policy, 2007, 35 (4) : 2163 - 2172.
  • 5John Thgersen, Alice GtOnhCj. Electricity saving in households-- A social cognitive approach [ J ]. Energy Policy, 2010, 38 ( 12 ) : 7732 - 7743.
  • 6A. H. M. E. Reinders, K. Vringer, K. Blok. The direct and indirect energy requirement of households in the European Union [J]. Energy Policy, 2003,31(2): 139 -153.
  • 7A Druckman, T Jackson. Household Energy Consumption in the UK: A Highly Geographically and Socio-economically Disaggregated model[J]. Energy Policy, 2008, 36(8): 3177-3192.
  • 8Dirk Brounen, Nils Kok, John M. Quigley. Residential energy use and conservation: Economics and demographics [ J ]. European Economic Review, 2012,56(5): 931 -945.
  • 9J Martinsson, L J Lundqvist, A Sundstrm. Energy saving in Swedish households. The (relative) importance of environmental attitudes[J]. Energy Policy, 2011, 39(9): 5182-5191.
  • 10W. Poortinga, L. Steg, C. Vlek. Values, environmental concern, and environmental behavior: A study into household energy use [J]. Environment and Behavior, 2004, 36(1) : 70 -93.

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部