摘要
计算机运算能力的提升为有限元仿真分析提供支撑,可更高效地求解较复杂的结构及非线性问题。文中基于有限元仿真分析技术,针对锰铜合金复杂的力学特性进行仿真计算,分别采用Prony级数本构模型和并联流变本构模型对锰铜合金进行不同变形条件下的应力松弛实验仿真。通过提取应力松弛实验数据将其转化为相应模型参数并进行有限元仿真计算,获得可准确描述锰铜合金非线性力学特性的仿真模型参数。通过对比仿真和实验结果可知,并联流变模型能够更加准确地表征锰铜合金的应力松弛行为,在不同初始应变条件下,仿真结果和相应工况下的实验结果相对误差小于1%。并联流变模型比Prony级数模型更适用于锰铜合金在复杂工况下的仿真计算。
The improvement of computing power provides a support for finite element simulation analysis,which can solve more complex structures and nonlinear problems more efficiently.In this study,based on the finite element simulation analysis technology,the complex mechanical properties of Mn-Cu alloy are simulated.Prony series constitutive model and parallel rheological constitutive model are respectively adopted to simulate the stress relaxation test of Mn-Cu alloy under different deformation conditions.The stress relaxation experimental data are extracted and converted into the corresponding model parameters and the finite element simulation calculation is carried out.The simulation model parameters which can accurately describe the nonlinear mechanical properties of Mn-Cu alloy are obtained.By comparing the simulation and experimental results,it is concluded that the parallel rheological framework can more accurately characterize the stress relaxation behavior of Mn-Cu alloy.Under different initial strain conditions,the relative error of the simulation results and the test results under corresponding working conditions is less than 1%.Compared with Prony series constitutive model,parallel rheological framework is more suitable for the simulation of Mn-Cu alloy under complex working conditions.
作者
熊亚军
刘艳
袁贤浦
XIONG Yajun;LIU Yan;YUAN Xianpu(Shanghai Research Institute of Materials Co.Ltd.,Shanghai 200437,China;Shanghai Key Laboratory of Engineering Materials Application and Evaluation,Shanghai 200437,China)
出处
《电子科技》
2024年第8期47-53,共7页
Electronic Science and Technology
基金
国家重点研发计划(2021YFB3801804)
上海张江国家自主创新示范区专项发展资金(ZJ2021-ZD-006)。
关键词
锰铜合金
黏弹性
非线性
并联流变模型
Prony级数
有限元
应力松弛
仿真
Mn-Cu alloy
viscoelasticity
nonlinearity
parallel rheological framework
Prony series
finite element
stress relaxation
simulation