摘要
为进一步降低多种网络受到攻击的概率,不同类型的网络安全态势预测模型受到了国内外学者的广泛关注和深入研究。随着态势感知模型技术的快速发展,神经网络、时间序列和支持向量机等新颖技术策略被引入网络安全态势的预测模型中,深入优化改进了态势预测模型的原理和手段,进一步提高了态势预测模型的准确性。文中通过回顾和梳理网络安全态势预测技术的研究历史和发展进程,阐述态势预测模型的主要原理和发展现状,分析了当前技术方案存在的不足与缺陷,指出了网络安全态势预测模型技术未来的研究方向。
In order to further reduce the probability of multiple networks being attacked,different types of network security situation prediction models have received widespread attention and in-depth research from scholars both domestically and internationally.With the rapid development of situational awareness modeling technology,various novel technical solutions such as neural networks,time series,and support vector machines have been introduced into the prediction model of network security situations,deeply optimizing and improving the means and methods of situational prediction models,thereby further improving the accuracy of situational prediction models.This study reviews and sorts out the research history and development process of network security situation prediction technology,elaborates on the main principles and current development status of situation prediction models,analyzes the shortcomings and deficiencies of current technical solutions,and points out the future research directions of network security situation prediction model technology.
作者
卢臻阳
LU Zhenyang(Fujian Xin′an Network Technology Co.,Ltd.,Fuzhou 350101,China;Yang-En University,Quanzhou 362014,China)
出处
《电子科技》
2024年第8期92-96,共5页
Electronic Science and Technology
基金
福建省中青年教师教育科研项目(JAT201192)。
关键词
网络安全
信息安全
态势预测
入侵检测
态势感知
神经网络
数据挖掘
机器学习
network security
information security
situation prediction
intrusion detection
situational awareness
neural network
data mining
machine learning