期刊文献+

网络安全态势预测技术研究综述 被引量:1

Overview of Research on Network Security Situation Prediction Technology
下载PDF
导出
摘要 为进一步降低多种网络受到攻击的概率,不同类型的网络安全态势预测模型受到了国内外学者的广泛关注和深入研究。随着态势感知模型技术的快速发展,神经网络、时间序列和支持向量机等新颖技术策略被引入网络安全态势的预测模型中,深入优化改进了态势预测模型的原理和手段,进一步提高了态势预测模型的准确性。文中通过回顾和梳理网络安全态势预测技术的研究历史和发展进程,阐述态势预测模型的主要原理和发展现状,分析了当前技术方案存在的不足与缺陷,指出了网络安全态势预测模型技术未来的研究方向。 In order to further reduce the probability of multiple networks being attacked,different types of network security situation prediction models have received widespread attention and in-depth research from scholars both domestically and internationally.With the rapid development of situational awareness modeling technology,various novel technical solutions such as neural networks,time series,and support vector machines have been introduced into the prediction model of network security situations,deeply optimizing and improving the means and methods of situational prediction models,thereby further improving the accuracy of situational prediction models.This study reviews and sorts out the research history and development process of network security situation prediction technology,elaborates on the main principles and current development status of situation prediction models,analyzes the shortcomings and deficiencies of current technical solutions,and points out the future research directions of network security situation prediction model technology.
作者 卢臻阳 LU Zhenyang(Fujian Xin′an Network Technology Co.,Ltd.,Fuzhou 350101,China;Yang-En University,Quanzhou 362014,China)
出处 《电子科技》 2024年第8期92-96,共5页 Electronic Science and Technology
基金 福建省中青年教师教育科研项目(JAT201192)。
关键词 网络安全 信息安全 态势预测 入侵检测 态势感知 神经网络 数据挖掘 机器学习 network security information security situation prediction intrusion detection situational awareness neural network data mining machine learning
  • 相关文献

参考文献3

二级参考文献22

  • 1Cheung S, Lindqvist Ulf. Modeling multistep cyber attacks for scenario recognition[A]. DARPA Information Survivability Conference and Exposition (DISCEX Ⅲ)[C]. Washington D C: IEEE Computer Society Press, 2003.284-292.
  • 2Porras P A, Fong M W, Valdes A. A mission-impact-based approach to INFOSEC alarm correlation[A]. Proceedings of the 5th International Symposium on Recent Advances in Intrusion Detection (RAID) 2002[C]. Zurich Switzerland: Springer Verlag, 2002.95-115.
  • 3Goldman R P, Heimerdinger W. Information modeling for intrusion report aggregation[A]. Proceedings of the DARPA Information Survivability Conference and Exposition (DISCEX Ⅱ) 2001[C]. Anaheim: IEEE Computer Society Press, 2001.329-342.
  • 4Valdes A, Skinner K. Probabilistic alert correlation[A]. Proceedings of the 4th International Symposium on Recent Advances in Intrusion Detection (RAID) 2001[C]. Davis: Springer Verlag, 2001.54-68.
  • 5Debar H, Wespi A. Aggregation and correlation of intrusion-detection alerts[A]. Proceedings of the 4th International Symposium on Recent Advances in Intrusion Detection (RAID) 2001[C]. Davis: Springer Verlag, 2001.85-103.
  • 6Templeton S J, Levitt K. A requires/provides model for computer attacks[A]. Proceedings of the New Security Paradigms Workshop 2000[C]. Cork Ireland: ACM Press, 2000.31-38.
  • 7Ning P, Xu D B. Learning attack strategies from intrusion alerts[A]. Proceedings of the 10th ACM Conference on Computer and Communications Security (CCS 03)[C]. Washington D C: ACM Press, 2003.200-209.
  • 8Ning P, Cui Y, Reeves D, et al. Tools and techniques for analyzing intrusion alerts[J]. ACM Transactions on Information and System Security, 2004,7(2):274-318.
  • 9Frédéric C, Rodolphe O. LAMBDA: a language to model a database for detection of attacks[A]. Proceedings of the Third International Workshop on Recent Advances in Intrusion Detection (RAID)[C]. Purdue: Springer Verlag, 2000.197-216.
  • 10Cedric M, Ludovic M. ADeLe: an attack description language for knowledge-based intrusion detection[A]. Proceedings of the 16th International Conference on Information Security[C]. Paris: Kluwer, 2001.353-368.

共引文献14

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部