期刊文献+

In silico optimization of actuation performance in dielectric elastomercomposites via integrated finite element modeling and deep learning

下载PDF
导出
摘要 Dielectric elastomers(DEs)require balanced electric actuation performance and mechanical integrity under applied voltages.Incorporating high dielectric particles as fillers provides extensive design space to optimize concentration,morphology,and distribution for improved actuation performance and material modulus.This study presents an integrated framework combining finite element modeling(FEM)and deep learning to optimize the microstructure of DE composites.FEM first calculates actuation performance and the effective modulus across varied filler combinations,with these data used to train a convolutional neural network(CNN).Integrating the CNN into a multi-objective genetic algorithm generates designs with enhanced actuation performance and material modulus compared to the conventional optimization approach based on FEM approach within the same time.This framework harnesses artificial intelligence to navigate vast design possibilities,enabling optimized microstructures for high-performance DE composites.
出处 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2024年第1期48-56,共9页 力学快报(英文版)
基金 supported by the National Key Research and Development Program of China(Grant No.2022YFB3707803) the National Natural Science Foundation of China(Grant Nos.12072179 and 11672168) the Key Research Project of Zhejiang Lab(Grant No.2021PE0AC02) Shanghai Engineering Research Center for Inte-grated Circuits and Advanced Display Materials.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部