期刊文献+

完全正则三部图与二部图的笛卡尔积的亏格

Genus of Cartesian Product of a Complete Regular Tripartite Graph and a Bipartite Graph
下载PDF
导出
摘要 设Km,m,m(m≥1)是一个完全正则三部图,G是一个围长大于4的二部图.当G的最大度不大于2m时,本文得到完全正则三部图Km,m,m与G的笛卡尔积的亏格.我们的结果推广了Bonnington和Pisanski关于Km,m,m与偶圈的笛卡尔积的亏格.此外,我们还得到了Km,m,m与一些非二部图的笛卡尔积的不可定向亏格. Let K_(m,m,m)(m≥1)be a complete regular tripartite graph,and G be a bipartite graph with girth greate than 4.In this paper,the genus of cartesian product of K_(m,m,m)and G with?(G)≤2m is determined.It generalize the result by Bonnington and Pisanski,which gives the genus of cartesian product of K_(m,m,m)and an even cycle Moreover,the nonorientable genera of cartesian products of K_(m,m,m)and some non-bipartite graphs are obtained.
作者 郭婷 Guo Ting(School of Mathematics and Statistics,Hunan Normal University,Changsha 410081,China)
出处 《数学理论与应用》 2024年第2期92-102,共11页 Mathematical Theory and Applications
基金 supported by the National Natural Science Foundation of China(No.12101228) the Innovative Platform Project of Hunan Province(No.20K078)。
关键词 亏格 完全正则三部图 二部图 笛卡尔积 Genus Complete regular tripartite graph Bipartite graph Cartesian product
  • 相关文献

参考文献1

二级参考文献19

  • 1Gross, J., Robbins, D. P., Tucker, T. W.: Genus distributions for bouquets of circles. J. Combin Theory Ser., B47, 292-306 (1989)
  • 2Gross, J., Klein, E., Rieper, R.: On the average genus of a graph. Graphs Combin., 9, 153-162 (1993)
  • 3Furst. M. L., Gross, J., Statman, R.: Genus distributions for two classes of graphs. J. Combin. Theory Ser. B, 46, 22-36 (1989)
  • 4Tesar, E. H.: Genus distribution of Ringel ladders. Discrete Math., 216, 235-252 (2000)
  • 5Chen, J., Gross, J., Rieper, R. G: Overlap matrices and total embeddings. Discrete Math., 128, 73-94(1994)
  • 6Mohar, B.: An obstruction to embedding graphs in surface. Discrete Math., 78, 135-142 (1989)
  • 7Kwak, J., Shim, S.: Total embedding distributions for bouquets of circles. Discrete Math., 248, 93-108(2002)
  • 8Chen, J., Gross, J.: Limit points for average genus (II), 2-Connected non-simplicial graphs. J. Combin.Theory, B56, 108-129 (1992)
  • 9Chen, J., Gross, J.: Kuratowski-type theorems for average genus. J. Combin. Theory, B57, 100-121 (1993)
  • 10Stab_l, S.: Generalized embedding schemes. J. Graph Theory, 2, 41-52 (1978)

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部