期刊文献+

顺北沙漠地区夏季采集高频影响因素研究

Study on the influencing factors of high frequency collected in summer in the Shunbei desert area
下载PDF
导出
摘要 顺北地区位于塔里木盆地沙漠腹地,地表全部为沙漠覆盖,多垄状高大沙丘,高程变化剧烈,激发接收条件较差。但该区油气资源丰富,且大多埋藏较深,目的层一般位于地下7 000 m以下的奥陶系,对采集地震资料品质要求较高。因此,正确地选择施工时间以及激发接收条件是地震勘探的首要环节,直接影响采集地震资料的品质,是地下地质成像的基础。笔者介绍了A区采集夏季施工过程中遇到的采集资料品质变化情况,通过检波器埋置温度、湿度以及深度变化等实验分析介质环境对采集资料品质的影响,确定沙漠区夏季采集受高温蒸发、风沙搬移作用影响,使地表沙质松散,检波器耦合性变差,进而加重采集高频噪音,严重影响采集资料品质。 Shunbei area is located in the hinterland of the Tarim Basin desert.The surface is entirely covered by deserts,with ridges of tall dunes,dramatic elevation changes,and poor excitation and reception conditions.However,the area is rich in oil and gas resources;most are buried deep.The target layer is generally located in the Ordovician system below 7000m underground,which has high requirements for the quality of seismic data acquisition.Correct selection of construction time and excitation and reception conditions are the primary links of seismic exploration,directly affecting the quality of seismic data acquisition,It is the foundation of underground geological imaging.This article introduces the changes in the quality of collected data encountered during the summer construction of collecting data in the SHUB4 area.Through experiments such as the buried temperature,humidity,depth,and shot point recollection of the detector points,it is determined that the collection of data in the desert area in summer is affected by high-temperature evaporation and wind sand movement,resulting in loose surface sand,poor coupling of the detector points,and further aggravating the high frequency collected noise.
作者 王志纬 高宇航 吴晗 宋辉 WANG Zhiwei;GAO Yuhang;WU Han;SONG Hui(Sinopec Geophysical Research Institute Co.,Ltd.,Nanjing 211103,China;Sinopec Geophysical Corporation Eastern Branch,Nanjing 210009,China)
出处 《物探化探计算技术》 CAS 2024年第4期410-417,共8页 Computing Techniques For Geophysical and Geochemical Exploration
关键词 顺北沙漠区 地震采集 夏季 高频影响 Shunbei area seismic acquisition summer high frequency collected
  • 相关文献

参考文献6

二级参考文献93

  • 1宫文峰,陈辉,张美玲,张泽辉.基于深度学习的电机轴承微小故障智能诊断方法[J].仪器仪表学报,2020,41(1):195-205. 被引量:87
  • 2郭江华,侯馨光,陈国钧,张庆.船舶柴油机故障诊断技术研究[J].中国航海,2005,28(4):75-78. 被引量:38
  • 3KUBAT M, HOLTE R C, MATWIN S. Machine learning for the detection of oil spills in satellite radar images[ J] . Machine Learning, 1998, 30 ( 2- 3) : 195 -215 .
  • 4PHUA C, ALAHAKOON D. Minority report in fraud detection: classication of skewed data[ J] . SIGKDD Exp lorations, 2004 , 6 ( 1 ) :50- 59 .
  • 5PEREZ J M, MUGUERZA J, ARBELAITZ O, et al. Consolidated tree classifier learning in a car insurance fraud detection domain with class imbalance[ C] / / Proc of the 3rd International Conference on Advances in Pattern Recognition( ICAPR’05) . 2005 : 381- 389.
  • 6CASTILLO M D del, SERRANO J I. A multistrategy approach for digital text categorization from imbalanced documents [ J] . SIGKDD Exploration s, 2004, 6 ( 1) : 70- 79 .
  • 7ZHENG Zhao-hui, WU X, SRIHARI R K. Feature selection for text categorization on imbalanced data [ J] . SIGKDD Explorat ions,2004, 6 ( 1) : 80 - 89.
  • 8COHEN G, HILARIO M, SAX H, et al. Data imbalance in surveillance of nosocomial infections[ C] / / Proc of the 4th International Symposium on Medical Data Analysis ( ISMDA’03 ) . Berlin: [ s. n. ] ,2003: 109-117 .
  • 9CHEN Jian-xun, CHENG T H, CHAN A L F, et al. An application of classification analysis for skewed class distribution in therapeutic drug monitoring the case of vancomycin[ C] / / Proc of Workshop on Medical Information Systems ( IDEAS-DH’04 ) . Beijing: [ s. n. ] ,2004: 35 - 39.
  • 10YOON K, KWEK S. An unsupervised learning approach to resolving the data imbalanced issue in supervised learning problems in functional genomics[ C] / / Proc of the 5th International Conference on Hybrid Intelligent Systems( HIS’05 ) . Rio de Janeiro: [ s. n. ] , 2005 : 303-308.

共引文献133

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部