摘要
参考国内外聚变堆技术,建立了一种200 MW激光惯性约束聚变堆包层概念设计,包层采用超临界二氧化碳和锂铅双冷结构。研究构建了瞬态和稳态耦合模型计算包层温度分布及变化。靶丸内爆反应使用MULTI-IFE进行计算,核热耦合部分基于蒙特卡罗程序OpenMC和自编程换热模型对包层模型结构、冷却和产氚进行计算。研究结果表明,核热耦合模型能够完成对包层的初步计算分析,周期性的瞬态载荷会引起第一壁面温度的振荡,但包层内部的温度最终会收敛到稳态计算结果。堆腔尺寸对于降低温度以及震荡效果明显,但仍需氙展平辐射功率峰。包层产氚和能量导出同时受到堆腔尺寸和增殖区的影响,在200 MW工况下,3 m半径和0.25 m增殖区尺寸计算结果最能满足需求。
This study presents a conceptual design of a 200 MW laser Inertial Confinement Fusion(ICF)reactor blanket,referring to fusion reactor technologies.The blanket employs a dual-coolant structure consisting of supercritical CO2(S-CO2)and liquid lead-lithium(PbLi).Transient and steady-state coupled models are established to calculate the temperature distribution and variations within the blanket.The implosion of the pellets is computed using MULTI-IFE.The nuclear heat coupling part is based on the Monte Carlo program OpenMC and self-programmed heat transfer models to calculate the blanket’s structure,cooling,and tritium production.The research findings indicate that the nuclear heat coupling model can complete preliminary calculations and analysis of the blanket.Periodic transient loads cause oscillations in the temperature of the first wall surface,but the temperature inside the blanket eventually converges to the steady-state calculation results.The reactor size significantly affects temperature reduction and oscillation effects,but it still requires xenon to flat radiation power peak.Both tritium production and energy export from the blanket are influenced by the reactor cavity size and the size of the breeding zone.Under the 200 MW operating conditions,it shows that a 3 m radius and a 0.25 m breeding zone size best meet the requirements.
作者
李昕泽
张冰倩
陈荣华
张魁
张大林
田文喜
秋穗正
苏光辉
Li Xinze;Zhang Bingqian;Chen Ronghua;Zhang Kui;Zhang Dalin;Tian Wenxi;Qiu Suizheng;Su Guanghui(Department of Nuclear Science and Technology,Xi’an Jiaotong University,Xi’an 710049,China)
出处
《强激光与粒子束》
CAS
CSCD
北大核心
2024年第8期17-25,共9页
High Power Laser and Particle Beams
关键词
激光聚变
聚变包层
核热耦合
能量沉积
laser inertial confinement fusion
tritium breeding blanket
neutronics-thermal coupling
energy deposition