期刊文献+

复杂场景SAR图像的船舰目标快速检测研究

Research on Fast Detection of Complex SAR Ship Targets Based on Improved YOLOv3 and Attention Mechanism
下载PDF
导出
摘要 复杂场景SAR图像容易受地物和强散射干扰的影响。为提高船舰目标检测算法的效率和精确率,本文提出一种基于改进YOLOv3和注意力机制的检测网络方案。该检测网络主要由目标筛选网络P-FCN和目标精确检测网络S-SSD组成。PFCN是一个轻量型的全卷积网络,用于快速筛选船舰目标。S-SSD是一个改进的YOLOv3网络,通过多层次特征融合系统结合双通道注意力机制CBAM,结合P-FCN对船舰的目标定位实现了对船舰目标的精确检测。实验结果表明,本文算法对于复杂场景SAR图像船舰目标具有较好的检测性能。 SAR images in complex scenes are easily affected by terrain and strong scattering interference.To improve the efficiency and accuracy of ship target detection algorithms,this paper proposes a detection network scheme based on improved YOLOv3 and attention mechanism.The detection network mainly consists of the target screening network P-FCN and the target precise detection network S-SSD.P-FCN is a lightweight fully convolutional network used for rapid screening of ship targets.S-SSD is an improved YOLOv3 network that achieves precise detection of ship targets through a multi-level feature fusion system combined with dual channel attention mechanism CBAM and P-FCN for ship target localization.The experimental results show that the algorithm proposed in this paper has good detection performance for ship targets in complex SAR images.
作者 曹红 CAO Hong(School of Accounting And Finance,Zhejiang Business College,Hangzhou,China,310000)
出处 《福建电脑》 2024年第7期53-57,共5页 Journal of Fujian Computer
基金 浙江省教育厅科研项目“基于改进YOLOv3与注意力机制的复杂SAR图像船舰快速检测研究”(No.Y202249939)资助。
关键词 合成孔径雷达图像 船舰目标 快速检测算法 Synthetic Aperture Radar Images Ship Targets Fast Detection Algorithm
  • 相关文献

参考文献3

二级参考文献13

共引文献96

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部