期刊文献+

基于不均匀光照校正和优化透射率的夜间去雾

Nighttime Dehazing Based on Uneven Light Correction and Optimized Transmission
下载PDF
导出
摘要 针对夜间有雾天气场景下的光照不均匀、图像不清晰问题,提出了一种基于夜间不均匀光照校正和优化透射率的去雾算法。首先针对光照不均匀问题,使用基于伽马函数的图像自适应校正算法,消除不均匀光照对图像的影响;其次,由于夜间图像大部分颜色较暗,通过改进局部大气光获得大气光值;利用Sigmoid函数融合亮通道与暗通道得到粗透射率,经过联合双边滤波细化,再对光源处透射率进行优化,并使用伽马函数增强得到最终透射率;然后根据大气散射模型得到初步恢复图像;最后经过引导滤波细化,得到最终图像。实验结果表明所提算法在夜间场景中能有效去雾,且能较好的保持图像颜色对比度。 In the hazy environment at night,the images captured by the observer are characterized by low contrast and blur caused by uneven ambient illumination,a defogging algorithm based on uneven illumination correction and transmission optimization at night is proposed.Firstly,for the problem of uneven illumination,an image adaptive correction algorithm based on Gamma function was used to eliminate the influence of uneven illumination on the image;secondly,since most of the night images are dark places,the atmospheric light value was obtained by improving the local atmospheric light;the rough transmission was obtained by fusing the bright channel and the dark channel through the Sigmoid function,after joint bilateral filtering refinement,the transmission at the light source was then optimized and the final transmittance was obtained using gamma function enhancement;then,the initial restoration image was obtained according to the atmospheric scattering model;finally,the guided filtering was refined to obtain the final image.The experimental results show that the proposed algorithm can effectively dehaze in the night scene,and can better maintain the image color contrast.
作者 陈飞 杨燕 陈阳 CHEN Fei;YANG Yan;CHEN Yang(School of Electronic and Information Engineering,Lanzhou Jiaotong University,Lanzhou Gansu 730070,China)
机构地区 兰州交通大学
出处 《计算机仿真》 2024年第5期172-177,257,共7页 Computer Simulation
基金 国家自然科学基金(61561030) 甘肃省高等学校产业支撑计划项目(2021CYZC-04) 兰州交通大学研究生教改项目(JG201928)。
关键词 伽马函数 不均匀光照矫正 局部大气光 亮暗通道融合 夜间去雾 Gamma function Uneven illumination correction Local atmospheric light Bright and dark channel fusion Nighttime dehazing
  • 相关文献

参考文献4

二级参考文献95

  • 1芮义斌,李鹏,孙锦涛.一种图像去薄雾方法[J].计算机应用,2006,26(1):154-156. 被引量:52
  • 2孙玉宝,肖亮,韦志辉,吴慧中.基于偏微分方程的户外图像去雾方法[J].系统仿真学报,2007,19(16):3739-3744. 被引量:34
  • 3Gonzalez R C, Woods R E. Digital Image Processing. Read- ing, MA: Addison-Wesley, 1992.
  • 4Nayar S K, Narasimhan S G. Vision in bad weather. In: Proceedings of the 7th IEEE International Conference on Computer Vision. Kerkyra: IEEE, 1999, 2:820-827.
  • 5Narasimhan S G, Nayar S K. Vision and the atmosphere. International Journal of Computer Vision, 2002, 48(3): 233-254.
  • 6Narasimhan S G, Nayar S K. Contrast restoration of weather degraded images. IEEE Transactions on Pattern AnMysis and Machine Intelligence, 2003, 25(6): 713-724.
  • 7Narasimhan S G, Nayar S K. Removing weather effects from monochrome images. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pat- tern Recognition (CVPR 2001). Kauai: IEEE, 2001, 2: II- 186-II-193.
  • 8Hauti6re N, Tarel J P, Lavenant J, Aubert D. Automatic fog detection and estimation of visibility distance throughuse of an onboard camera. Machine Vision and Applications 2006, 17(1): 8-20.
  • 9Kim T K, Paik J K, Kang B S. Contrast enhancement sys- tem using spatially adaptive histogram equalization with temporal filtering. IEEE Transactions on Consumer Elec- tronics, 1998, 44(1): 82-87.
  • 10Stark J A. Adaptive image contrast enhancement using gen- eralizations of histogram equalization. IEEE Transactions on Image Processing, 2000, 9(5): 889-896.

共引文献326

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部