期刊文献+

改进的变分稀疏贝叶斯学习离格DOA估计方法

Improved variational sparse Bayesian learning off-grid DOA estimation method
下载PDF
导出
摘要 为提高阵列信号处理运算速率,改善其方位估计性能,提出了一种改进变分稀疏贝叶斯学习离格波达方向(direction-of-arrival, DOA)估计方法。该方法利用实值变换,将向量化后的接收信号协方差矩阵转化到实数域,结合变分稀疏贝叶斯学习和网格演化的思想,在迭代过程中使网格从初始的均匀网格自适应地演化为非均匀网格,通过网格更新和网格裂变交替迭代使演化后的网格点逐渐逼近真实信源方位。仿真结果表明,改进方法与传统压缩感知类方法相比,减小了运算量,提高了运算速率,且具有更高的方位估计精度和方位分辨能力,在少快拍和低信噪比情况下,改进方法性能提升的优势更明显。湖上试验数据处理结果进一步验证了该方法的有效性和工程实用性。 Here,to improve processing speed and direction-of-arrival(DOA)estimation performance of array signals,an improved variational sparse Bayesian learning off-grid DOA estimation method was proposed.This method could utilize real value transformation to transform covariance matrix of vectorized receival signals in complex domain into real domain.Ideas of variational sparse Bayesian learning and grid evolution were combined to make a grid adaptively evolute from an initial uniform one to a non-uniform one in iteration process.Though grid update and grid fission alternating iterations,evolved grid points could gradually approach DOA of actual signal source.Simulation results showed that compared with traditional compressed sensing methods,the proposed method can reduce computational amount,improve computational speed,and have higher DOA estimation accuracy and DOA resolution;in the case of fewer snapshots and low signal-to-noise ratio,these advantages become more obvious;data processing results of on-lake tests further verify the effectiveness and engineering practicality of the proposed method.
作者 王绪虎 金序 侯玉君 徐振华 田雨 张群飞 WANG Xuhu;JIN Xu;HOU Yujun;XU Zhenhua;TIAN Yu;ZHANG Qunfei(College of Information and Control Engineering,Qingdao University of Technology,Qingdao 266520,China;CAS Key Lab of Ocean Circulation and Waves,Institute of Oceanology,Chinese Academy of Sciences(CAS),Qingdao 266071,China;School of Navigation,Northeast Polytechnic University,Xi’an 710072,China)
出处 《振动与冲击》 EI CSCD 北大核心 2024年第13期134-143,共10页 Journal of Vibration and Shock
基金 国家自然科学基金(62171247) 山东省自然科学基金(ZR2021QF113,ZR2022MF273)。
关键词 波达方向(DOA)估计 离网格模型 实值变换 网格演化 变分稀疏贝叶斯学习 direction of arrival(DOA)estimation off-grid model real-value transformation grid evolution variational sparse Bayesian learning
  • 相关文献

参考文献3

二级参考文献12

  • 1马培锋,严胜刚.相干分布源的方位估计[J].声学技术,2007,26(5):817-821. 被引量:1
  • 2Astely D, Ottersten B. The effect of local scattering ondirection of arrival estimation with MUSIC [ J ]. IEEE Trans. Signal Processing, 1999, 47 (12) : 3220 - 3234.
  • 3Tabrikian J, Messer H. Robust localization of scattered sources[ J ]. Proceedings of the Tenth IEEE Workshop on Statistical Signal and Array Processing, Pocono Manor, Paname: IEEE, 2000, 453 -457.
  • 4Raich R, Goldberg J and Messer I4. Bearing estimation for a distributed source via the conventional beamformer [ J ]. Proceedings of Ninth IEEE SP Workshop on Statistical Signal and Array Processing, Portland OR, USA: IEEE, 1998, 5-8.
  • 5Valaee S, Champagne B, Kabal P. Parametric localization of distributed sources [ J]. IEEE Trans. SP, 1995, 43 (9) : 2144 - 2153.
  • 6Lee Y U, Choi J, Song I, et al. Distributed source modeling and direction-of-arrival estimation techniques [ J ]. IEEE Trans. SP, 1997,45 (4) :960 - 969.
  • 7Shan T J, Wax M, Kailath T. On spatial smoothing for estimation of coherent signals [ J ]. IEEE Trans. On ASSP, 1985, 33(4): 806-811.
  • 8么彬,李海森,周天,魏玉阔,陈宝伟.多子阵超宽覆盖海底地形探测方法试验研究[J].哈尔滨工程大学学报,2008,29(10):1076-1081. 被引量:5
  • 9李海森,陈宝伟,么彬,周天,魏玉阔.多子阵高分辨海底地形探测算法及其FPGA和DSP阵列实现[J].仪器仪表学报,2010,31(2):281-286. 被引量:18
  • 10郑植,李广军.低复杂度相干分布源中心DOA估计方法[J].信号处理,2010,26(10):1516-1520. 被引量:3

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部