期刊文献+

BP神经网络预测船用钢焊接接头力学性能研究

Research on BP neural network prediction of marine steel welded joints mechanical properties
下载PDF
导出
摘要 采用不同成分母材和焊丝进行焊接工艺试验,研究母材成分、焊材成分、热输入和焊接位置等参数对焊接接头力学性能的影响,为进一步提升模型预测精度,通过遗传算法对BP神经网络进行优化,将优化权值和阈值赋值给BP神经网络进行建模,预测结果表明,优化模型稳定性好,提高了预测的精度和泛化能力,为焊接接头力学性能预测提供了借鉴,对船用钢和焊材冶金成分设计具有借鉴意义。 Welding process experiments were conducted using different compositions of base materials and welding wires to study effects of parameters such as base material composition,welding material composition,heat input,and welding position on welded joints mechanical properties.To improve prediction accuracy of model,genetic algorithm is used to optimize BP neural network.Assign optimization weights and thresholds to BP neural network for modeling,Prediction results indicate that optimized model has good stability,improved prediction accuracy and generalization ability,provided reference for predicting welded joints mechanical properties,and has reference significance for metallurgical composition design of marine steel and welding materials.
作者 马晓阳 何亮 成应晋 王杏华 程彬 贺智涛 Ma Xiaoyang;He Liang;Cheng Yingjin;Wang Xinghua;Cheng Bin;He Zhitao(Luoyang Ship Material Research Institute,Luoyang 471023,China)
出处 《金属制品》 CAS 2024年第3期59-63,共5页 Metal Products
关键词 BP神经网络 遗传算法 焊接 力学性能 BP neural network genetic algorithm weld mechanical property
  • 相关文献

参考文献6

二级参考文献29

  • 1张文钺.焊接冶金学[M].北京:机械工业出版社,1993.
  • 2Benyounis K Y, Olabi A G, Hashmi M S J. Multi-response optimization of CO2 laser-welding process of austenitic stainless steel[J]. Optics & Laser Technology, 2007, 3(9) : 1 - 12.
  • 3Mellit A, Benghanem M. Sizing of stand-alone photovoltaic systems using neural network adaptive model [ J ]. Desalination, 2007, 209: 64 - 72.
  • 4Fathi A, Aghakouchak A A. Prediction of fatigue crack growth rate in welded tubular joints using neural network [ J ]. International Journal of Fatigue, 21307, 29:261-275.
  • 5Ram D, Srivastava L, Pandit M, et al. Corrective action planning using RBF neural network[J]. Applied Soft Computing, 2007, 7:1055 - 1063.
  • 6Ghalib Tham,Mohamad Yazman Yaakub,Sunhaji Kiyai Abas,Yupiter H.P. Manurung,Bukhari Abu Jalil.Predicting the GMAW 3F T-Fillet Geometry and Its Welding Parameter[J].Procedia Engineering.2012
  • 7Rakesh Malviya,Dilip Kumar Pratihar.Tuning of neural networks using particle swarm optimization to model MIG welding process[J].Swarm and Evolutionary Computation.2011(4)
  • 8Fanrong Kong,Junjie Ma,Radovan Kovacevic.Numerical and experimental study of thermally induced residual stress in the hybrid laser–GMA welding process[J].Journal of Materials Processing Tech.2011(6)
  • 9Jing-Shiang Shih,Yih-Fong Tzeng,Jin-Bin Yang.Principal component analysis for multiple quality characteristics optimization of metal inert gas welding aluminum foam plate[J].Materials and Design.2010(3)
  • 10Andrea Capriccioli,Paolo Frosi.Multipurpose ANSYS FE procedure for welding processes simulation[J].Fusion Engineering and Design.2009(2)

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部