期刊文献+

单脉冲平顶激光清洗CFRP的多物理场特性研究

Research on multi physics field characteristics of the single pulse top hat laser cleaning CFRP
下载PDF
导出
摘要 为探究平顶激光清洗碳纤维增强复合材料(CFRP)的作用机制,本研究考虑CFRP的组分对激光的吸收、反射特性差异显著,将激光载荷分层施加到CFRP的细观有限元模型上,引入热烧蚀-热应力双重作用效果,还原不同能量密度下单脉冲平顶激光清洗形貌,并完成了试验验证。结果表明:分层施加激光载荷较传统表面加载模式能够有效提升仿真精度,采用热烧蚀-热应力双重判据能够进一步提升形貌还原效果,本研究模型的仿真形貌长轴贴合度不低于96.64%,面积贴合度达到80.00%,并通过高精度模型瞬时温度场分布能够指导激光清洗CFRP表面树脂的实际工艺。 In order toinvestigate the mechanism of top hat laser cleaning of carbon fiber reinforced composite(CFRP),considering the significant differences in the absorption and reflection characteristics of the components of CFRP,the laser load is layered to the meso finite element model of CFRP.The dual effect of thermal ablation and thermal stress is introduced to restore the morphology of single pulse flat top laser cleaning at different energy densities,and to complete the experimental validation.The results show that the layered application of laser load can effectively improve the simulation accuracy compared with the traditional surface loading mode,and the dual criterion of thermal ablation thermal stress can further improve the morphology reduction effect.The long axis accuracy of the simulated topography of this model is not less than 96.64%,and the area accuracy reaches 80.00%.Therefore,the instantaneous temperature field distribution of high precision models can guide the actual process of laser cleaning of CFRP surface resin.
作者 刘国春 陈光澳 杨文锋 李绍龙 王文轩 LIU Guo-chun;CHEN Guang-ao;YANG Wen-feng;LI Shao-long;WANG Wen-xuan(Aviation Engineering Institute,Civil Aviation Flight University of China,Guanghan 618307,China)
出处 《激光与红外》 CAS CSCD 北大核心 2024年第6期899-907,共9页 Laser & Infrared
基金 四川省科技厅重点研发项目(No.2021YFSY0025)资助。
关键词 平顶脉冲激光 分层施加 碳纤维复合材料 多物理场 形貌还原 top hat pulsed laser layered application carbon fiber composites multi physics field topography restoration
  • 相关文献

参考文献7

二级参考文献63

  • 1G. Daurelio, G. Chita, M. Cinquepalmi. Laser surface cleaning, de-rusting, de-painting and de-oxidizing[J]. Appl. Phys. A, 1999, 69(suppl.): S543~S546.
  • 2D. Bauerle. Laser processing and chemistry: recent developments[J]. Appl. Surf. Sci., 2002, 186(1-4): 1~6.
  • 3Y. W. Zheng, B. S. Luk′yanchuk, Y. F. Lu et al.. Dry laser cleaning of particles from solid substrates: experiments and theory[J]. J. Appl. Phys., 2001, 90(5): 2135~2142.
  • 4N. Arnold. Dry Laser Cleaning of Particles by Nanosecond Pulses: Theory, in B.S. Luk′ yanchuk (Ed.), Laser Cleaning[M]. New Jersey: World Scientific, 2002. 51~102.
  • 5H. Garbacz, E. Fortuna, J. Marczak et al.. Laser cleaning of copper roofing sheets subjected to long-lasting environmental corrosion[J]. Appl. Phys. A, 2010, 100(3): 693~701.
  • 6S. Siano, R. Salimbeni. Advances in laser cleaning of artwork and objects of historical interest: the optimized pulse duration approach[J]. Accounts of Chemical Research, 2010, 43(6): 739~750.
  • 7K. Mann. Cleaning of optical surfaces by excimer laser radiation[J]. Appl. Surf. Sci., 1996, 96-98: 483~488.
  • 8G. X. Chen, T. J. Kwee, K. P. Tan. Laser cleaning of steel for paint removal[J]. Appl. Phys. A, 2010, 101(2): 249~253.
  • 9K. G. Watkins. Mechanisms of laser cleaning[C]. SPIE, 2000, 3888: 165~174.
  • 10A. Michel, O. Roland. Basic processes of pulsed laser materials interaction. Applications to laser cleaning of oxidized surfaces[C]. SPIE, 2005, 5777: 982~985.

共引文献104

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部