摘要
针对航拍图像往往受雾霾天气影响出现图像模糊、细节丢失等问题,本研究提出了一种基于改进SRGAN的无人机航拍图像去雾算法,旨在快速高效地去除航拍图像中的雾霾并恢复图像细节和纹理信息。本文重新设计判别器核心结构SResblock并引入CBAM注意力机制,完成了对原始SRGAN的改进,提出DH-SRGAN算法。在VISDRONE户外航拍合成雾数据集上测试结果显示,本算法在单幅图像去雾方面取得了显著提升,去雾后的图像与原始图像PSNR达24.48dB、SSIM达95.29%,两项指标均优于传统算法。相比原始SRGAN,DH-SRGAN算法更加轻量化,适合嵌入到无人机侦察任务中的图像预处理流程。
Aiming at the problem that aerial images are often affected by hazy weather with image blurring and loss of details,an improved SRGAN algorithm is proposed to remove haze in aerial images quickly and efficiently and restore image details and texture information.In this paper,the core structure of discriminator SResblock is redesigned and CBAM attention mechanism is introduced to improve the original SRGAN,and DH-SRGAN algorithm is proposed.The test results on the VISDRONE outdoor aerial synthetic fog dataset show that the proposed algorithm achieves significant improvement in the fog removal of a single image,with the defogged image reaching 24.48 dB PSNR and 95.29%SSIM compared to the original image,which are better than the traditional algorithms in both metrics.Compared with original SRGAN,the DH-SRGAN algorithm is more lightweight and suitable for embedding into the image preprocessing process of UAV reconnaissance missions.
作者
王朝辉
严一鸣
韩晓微
梁天一
万子慷
王起钢
WANG Zhao-hui;YAN Yi-ming;HAN Xiao-wei;LIANG Tian-yi;WAN Zi-kang;WANG Qi-gang(Key Laboratory of Manufacturing Industrial Integrated Automation,Shenyang University,Shenyang 110004,China;The 11th Research Institute of CETC,Beijing 10015,China;Institute of Science and Technology Innovation,Shenyang University,Shenyang 110044,China)
出处
《激光与红外》
CAS
CSCD
北大核心
2024年第6期991-997,共7页
Laser & Infrared
基金
辽宁省应用基础研究计划项目(No.2023JH2,No.101300205)
沈阳市科技计划项目(No.23-407-3-33)资助。