期刊文献+

基于改进SRGAN的无人机航拍图像去雾算法

Improved SRGAN-based algorithm for defogging UAV aerial images
下载PDF
导出
摘要 针对航拍图像往往受雾霾天气影响出现图像模糊、细节丢失等问题,本研究提出了一种基于改进SRGAN的无人机航拍图像去雾算法,旨在快速高效地去除航拍图像中的雾霾并恢复图像细节和纹理信息。本文重新设计判别器核心结构SResblock并引入CBAM注意力机制,完成了对原始SRGAN的改进,提出DH-SRGAN算法。在VISDRONE户外航拍合成雾数据集上测试结果显示,本算法在单幅图像去雾方面取得了显著提升,去雾后的图像与原始图像PSNR达24.48dB、SSIM达95.29%,两项指标均优于传统算法。相比原始SRGAN,DH-SRGAN算法更加轻量化,适合嵌入到无人机侦察任务中的图像预处理流程。 Aiming at the problem that aerial images are often affected by hazy weather with image blurring and loss of details,an improved SRGAN algorithm is proposed to remove haze in aerial images quickly and efficiently and restore image details and texture information.In this paper,the core structure of discriminator SResblock is redesigned and CBAM attention mechanism is introduced to improve the original SRGAN,and DH-SRGAN algorithm is proposed.The test results on the VISDRONE outdoor aerial synthetic fog dataset show that the proposed algorithm achieves significant improvement in the fog removal of a single image,with the defogged image reaching 24.48 dB PSNR and 95.29%SSIM compared to the original image,which are better than the traditional algorithms in both metrics.Compared with original SRGAN,the DH-SRGAN algorithm is more lightweight and suitable for embedding into the image preprocessing process of UAV reconnaissance missions.
作者 王朝辉 严一鸣 韩晓微 梁天一 万子慷 王起钢 WANG Zhao-hui;YAN Yi-ming;HAN Xiao-wei;LIANG Tian-yi;WAN Zi-kang;WANG Qi-gang(Key Laboratory of Manufacturing Industrial Integrated Automation,Shenyang University,Shenyang 110004,China;The 11th Research Institute of CETC,Beijing 10015,China;Institute of Science and Technology Innovation,Shenyang University,Shenyang 110044,China)
出处 《激光与红外》 CAS CSCD 北大核心 2024年第6期991-997,共7页 Laser & Infrared
基金 辽宁省应用基础研究计划项目(No.2023JH2,No.101300205) 沈阳市科技计划项目(No.23-407-3-33)资助。
关键词 图像去雾 DH-SRGAN 深度学习 残差结构 注意力机制 image defogging DH-SRGAN deep learning residual structure attention mechanism
  • 相关文献

参考文献3

二级参考文献84

  • 1Zuyun JIANG,Xiangdong SUN,Xiaochun WANG.Image Defogging Algorithm Based on Sky Region Segmentation and Dark Channel Prior[J].Journal of Systems Science and Information,2020,11(5):476-486. 被引量:4
  • 2芮义斌,李鹏,孙锦涛.一种图像去薄雾方法[J].计算机应用,2006,26(1):154-156. 被引量:52
  • 3孙玉宝,肖亮,韦志辉,吴慧中.基于偏微分方程的户外图像去雾方法[J].系统仿真学报,2007,19(16):3739-3744. 被引量:34
  • 4Gonzalez R C, Woods R E. Digital Image Processing. Read- ing, MA: Addison-Wesley, 1992.
  • 5Nayar S K, Narasimhan S G. Vision in bad weather. In: Proceedings of the 7th IEEE International Conference on Computer Vision. Kerkyra: IEEE, 1999, 2:820-827.
  • 6Narasimhan S G, Nayar S K. Vision and the atmosphere. International Journal of Computer Vision, 2002, 48(3): 233-254.
  • 7Narasimhan S G, Nayar S K. Contrast restoration of weather degraded images. IEEE Transactions on Pattern AnMysis and Machine Intelligence, 2003, 25(6): 713-724.
  • 8Narasimhan S G, Nayar S K. Removing weather effects from monochrome images. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pat- tern Recognition (CVPR 2001). Kauai: IEEE, 2001, 2: II- 186-II-193.
  • 9Hauti6re N, Tarel J P, Lavenant J, Aubert D. Automatic fog detection and estimation of visibility distance throughuse of an onboard camera. Machine Vision and Applications 2006, 17(1): 8-20.
  • 10Kim T K, Paik J K, Kang B S. Contrast enhancement sys- tem using spatially adaptive histogram equalization with temporal filtering. IEEE Transactions on Consumer Elec- tronics, 1998, 44(1): 82-87.

共引文献213

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部