期刊文献+

基于数据仓库的RFM用户画像构建研究

Research on the Construction of RFM User Portrait Based on Data Warehouse
下载PDF
导出
摘要 随着大数据时代的到来,企业要想持久快速发展,须以客户为中心,了解不同客户群体的需求,通过海量数据的挖掘,对不断变化的客户期望迅速做出反应,并给他们提供个性化的服务。为满足企业获得更大的客户群体,论文基于电信运营商的数据,结合RFM模型提出了用户画像的构建方法,以超细分的客户标签为基础划分出不同的客户类型,实现了客户群的自助式多维分析和需求探索,为企业精准营销提供指导方法。 With the advent of the big data era,enterprises would have to develop rapidly and persistently depending on their customers.It is necessary to understand the needs of different customer groups through massive data mining,respond quickly to changing customer expectations,and provide personalized services to them.In order to meet the needs of enterprises to obtain higher customer value,based on the data of telecom operators and combined with RFM model,the paper proposes a method for constructing user portrait,classifying different customer types based on hyper-segmented customer tags,realizing self-service multi-dimensional analysis and demand exploration of customer groups,and providing guidance methods for enterprise precision marketing.
作者 叶小芹 YE Xiaoqin(School of Mechanical and Electrical Engineering,City University of Hefei,Hefei 230000,China)
出处 《黄山学院学报》 2024年第3期27-31,共5页 Journal of Huangshan University
基金 安徽省高校自然科学研究项目(CSZR202202) 安徽省质量工程高水平一流课程(2020kfkc172) 合肥城市学院校级重点质量工程项目(hc2021kcszsfkc001)。
关键词 挖掘 RFM模型 数据仓库 用户画像 dig RFM model data warehouse user portrait
  • 相关文献

参考文献11

二级参考文献90

共引文献363

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部