期刊文献+

基于改进YOLOv5的贴片电感表面缺陷检测研究

Research on surface defect detection of SMD inductors based on improved YOLOv5
下载PDF
导出
摘要 为实现贴片电感表面缺陷的快速精准检测,突破目前贴片电感表面缺陷检测速度慢、准确率低的技术难题,在YOLOv5算法基础上,引入SE注意力模块和双向特征融合网络(BiFPN)模型,提出基于注意力机制的特征提取网络结构,分别对不同特征通道赋予相应权重信息,使其在特征融合中能够快速传递,进一步提高了贴片电感表面缺陷模型的检测精度;考虑提取网络时无法高效检测出贴片电感的缺陷类型,设计出基于加权双向特征金字塔结构,增强了模型对不同尺度特征信息的表达能力;利用贴片电感表面缺陷检测数据集完成了SE注意力机制和BiFPN网络的消融实验以及目标检测算法的对比实验。结果表明,提出的改进模型平均准确率均值(mAP)达到97.12%较原YOLOv5算法提升了5.87%,检测速度达到40.47FPS,能够满足贴片电感表面缺陷检测的实时性和准确性要求。 In order to achieve fast and accurate detection of surface defects of SMD inductors and break through the current technical problems of slow speed and low accuracy of surface defect detection of SMD inductors,this paper introduced SE attention module and bidirectional feature pyramid network(BiFPN)model based on YOLOv5 algorithm,proposed a feature extraction network structure based on attention mechanism,and assigned corresponding weight information to different feature channels,so that they can be quickly transferred in feature fusion.The detection accuracy of the surface defect model of SMD inductor is further improved.Considering that the defect type of the SMD inductors cannot be detected efficiently when extracting the network,a bidirectional feature pyramid structure is designed to enhance the ability of the model to express the feature information of different scales.The ablation experiment of SE attention mechanism and BiFPN network,as well as the contrast experiment of target detection algorithm,are completed by using the SMD inductors surface defect detection data set.The results show that the mean average precision(mAP)of the improved model proposed in this paper reached 97.12%,which is 5.87%higher than the original YOLOv5 algorithm,and the detection speed reached 40.47 FPS,which can meet the real-time and accuracy requirements of surface defect detection of SMD inductors.
作者 陈建春 乔健 朱子唯 王功伟 CHEN Jianchun;QIAO Jian;ZHU Ziwei;WANG Gongwei(China Unicom(Guangdong)Industrial Internet Co.,Ltd,Guangzhou 510000,China;Guangdong Provincial Key Laboratory of Industrial Intelligent Inspection,Foshan University,Foshan 528225,China;School of Advanced Technology,Xi'an Jiaotong-Liverpool University,Suzhou 215028,China;Microwave and Vacuum Chamber,Jihua Laboratory,Foshan 528200,China)
出处 《佛山科学技术学院学报(自然科学版)》 CAS 2024年第4期10-18,共9页 Journal of Foshan University(Natural Science Edition)
基金 广东省重点建设学科科研能力提升项目(2022ZDJS042) 珠江人才计划项目(X200221DA200)。
关键词 缺陷检测 YOLOv5 SE注意力模块 BiFPN defect detection YOLOv5 SE attention module BiFPN
  • 相关文献

参考文献8

二级参考文献96

共引文献426

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部