期刊文献+

核酸等温扩增技术在病毒检测中的应用

Development of Nucleic Acid Isothermal Amplification Technologies for Virus Detection
下载PDF
导出
摘要 病毒是引发人类疾病的主要病原体之一.传统的聚合酶链式反应(PCR)技术虽然被广泛应用于病毒分子诊断,但其对温度的要求较为严格,限制了其在现场诊断中的应用.为了满足现场快速诊断的需求,核酸等温扩增技术得到快速发展,其无需热循环,可以在恒定温度下实现核酸扩增,可适应不同的应用场景.本文综合评述了等温扩增技术在病毒检测领域的最新进展,从病毒样本采集、核酸提取、等温扩增检测等几个方面分别进行阐述,探讨了酶辅助等温扩增技术、无酶等温扩增技术以及与多体系串联的级联扩增技术的原理、关键参数及其病毒检测应用,并对比了市场上相关试剂盒的特点.此外,讨论了当前核酸等温扩增技术在病原体检测应用中面临的一些难题,如提取效率、稳定性和成本等,提出了未来的发展方向,为进一步改善现场诊断效率提供了新的思路. Viruses play a significant role in causing human diseases,and traditional PCR techniques have been widely used for their molecular diagnosis.However,the temperature requirements of PCR limit its application in field diagnostics.To address the need for rapid on-site diagnosis,isothermal nucleic acid amplification technologies have emerged as a promising alternative.These technologies enable nucleic acid amplification at a constant temperature without the need for thermal cycling,making them more adaptable for different diagnostic settings.This comprehen-sive review examines the latest advancements in isothermal amplification technologies for virus detection.It covers various aspects,including viral sample collection,nucleic acid extraction,and isothermal amplification detection.The review explores the principles,key parameters,and applications of enzyme-assisted isothermal amplification,enzyme-free isothermal amplification,and cascade amplification techniques integrated with multiple systems.Furthermore,a comparison of commercially available reagent kits is provided to highlight their respective characteristics.Additionally,the review discusses the current challenges faced by isothermal nucleic acid amplification technologies in pathogen detection,such as extraction efficiency,stability,and cost,and proposes future directions to enhance the on-site diagnostic efficacy of these technologies.
作者 肖航 王小燕 邓兆佳 廖文静 谢文菁 彭汉勇 XIAO Hang;WANG Xiaoyan;DENG Zhaojia;LIAO Wenjing;XIE Wenjing;PENG Hanyong(State Key Laboratory of Environmental Chemistry and Ecotoxicology,Research Center for Eco-Environmental Sciences,Chinese Academy of Sciences,Beijing 100085,China;University of Chinese Academy of Sciences,Beijing 100049,China;School of Environment,Hangzhou Institute for Advanced Study,University of Chinese Academy of Sciences,Hangzhou 310013,China)
出处 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2024年第7期1-17,共17页 Chemical Journal of Chinese Universities
基金 国家自然科学基金(批准号:22276199) 国家重点研发计划项目(批准号:2022YFC3701302,2023YFA0915102) 中国科学院先导专项(批准号:XDB0750100)资助.
关键词 等温扩增技术 CRISPR检测 核酸扩增 环境病毒 病毒提取 Isothermal amplification technology CRISPR assay Nucleic acid amplification Environmental viruses Virus detection
  • 相关文献

参考文献1

二级参考文献16

  • 1J. D. Moody, P. Datte, K. Krauter, E. Bond. P. A. Michel S. H. Glenzer, L. Divol, C. Niemanm L. Suter, N. Mcezan B. J. MacGowan, R. Hibbard, R. London, J. Kilkcnny R. Wallace, J. L. Kline, K. Knittel, G. Friedcrs, B. Golick, G. Ross K. Widmann, J. Jackson, S. Vernon, and T. Clancy., Rev. Sci Instrum. 81, 10D921 (2010).
  • 2D. C. Gautier, K. A. Flippo, S. A. Letzring, J. W. Shimada, R. P. Johnson, T. R. Hurry, S. A. Gaillard, and B. M. Hegelich., Rev. Sci. Instrum. 79, 10F547 (2008).
  • 3F. Wang, X.-S. Peng, D. Yang, Z.-C. Li, T. Xu, H.-Y. Wei, and S.-Y. Liu, Acta Phys. Sin. 62, 17 (2013).
  • 4M. Martinez, W. Bang, G. Dyer, X. Wang, E. Gaul, T. Borger, M. Ringuette, M. Spinks, H. Quevedo, A. Bernstein, M. Donovan, and T. Ditmire, in 15th Advanced Accelerator Concepts Workshop, AIP Conference Proceedings 1507, 874 (2012).
  • 5X. Wang, R. Zgadzaj, N. Fazel, Z. Li, S. A. Yi, X. Zhang, W. Henderson, Y. Y. Chang, R. Korzekwa, H. E. Tsai, C. H. Pai, H. Quevedo, G. Dyer, E. Gaul, M. Martinez, A. C. Bernstein, T. Borger, M. Spinks, M. Donovan, V. Khudik, G. Shvets, T. Ditmire, and M. C. Downer, Nat. Commun. 4, 1988 (2013).
  • 6D. Taylor, E. Liang~ T. Clarke, A. Henderson, P. Chaguine, X. Wang, G. Dyer, K. Serratto, N. Riley, M. Donovan, and T. Ditmire, High Energy Density Physics 9, 363 (2013).
  • 7B. M. Hegelich, I. Pomerantz, L. Yin, H. C. Wu, D. Jung, B. J. Albright, D. C. Gautier, S. Letzring, S. Palaniyappan, R. Shah, K. Allinger, R. HSrlein, J. Schreiber, D. Habs, J. Blakeney, G. Dyer, L. Fuller, E. Gaul, E. Mceary, A. R. Meadows, C. Wang, T. Ditmire, and J. C. Fernandez, New J. Phys. 15~ 085015 (2013).
  • 8M. Storm, S. Jiang, D. Wertepny, C. Orban, J. Morrison, C. Willis, E. McCary, P. Belancourt, J. Snyder, E. Chowdhury, W. Bang, E. Gaul, G. Dyer, T. Ditmire, R. R. Freeman, and K. Akli, Phys. Pla~smas 20, 053106 (2013).
  • 9I. V. Pogorelsky, N. P. Dover, M. Babzien, A. R. Bell, A. E. Dangor, T. Horbury, C. A. J. Palmer, M. Polyanskiy, J. Schreiber, S. Schwartz, P. Shkolnikov, V. Yakimenko, and Z. Najmudin, in Advanced Accelerator Concepts 814 (2012).
  • 10S. C. Wilks, W. L. Kruer, M. Tabak, and A. B. Langdon, Phys. Rev. Lett. 69, 1383 (1992).

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部