期刊文献+

病毒介导的植物基因组编辑技术研究进展

Advances in Virus-mediated Genome Editing Technology in Plants
原文传递
导出
摘要 CRISPR/Cas作为一种新兴的靶向基因组编辑技术,具有操作过程简便、编辑效率高和支持多靶点编辑等优势,在植物遗传育种中应用前景广阔。然而对于一些尚未建立遗传转化体系和再生体系的植物,基因组编辑技术的应用仍然受限。病毒介导的植物基因组编辑技术可不依赖遗传转化和再生等步骤,即可快速获得无外源转基因成分的基因组编辑植物,受到广泛关注。该文主要介绍了病毒介导的CRISPR/Cas植物基因组编辑技术的工作原理及优势,系统总结了该技术在植物基因组编辑领域的应用现状,并重点讨论了该技术体系存在的问题及挑战,以期为深入开展这一领域研究提供参考。 As a new technology for targeted genome editing,clustered regularly interspaced short palindromic repeat(CRISPR)and CRISPR-associated protein(Cas)have the advantages of easy operation,high editing efficiency,and support for multi-target editing,thus showing wide application prospects in plant genetic breeding.However,the process in plants relies mainly on Agrobacterium-or particle bombardment-mediated genetic transformation,which is time-consuming as well as species-and varieties-dependent.Virus-mediated plant genome editing has attracted extensive attention because of its no requirement of genetic transformation and plant regeneration.In this review,we introduce the working principle and advantages of virus-mediated CRISPR/Cas plant genome editing technology,systematically summarize the current application status of this technology in the field of plant genome editing,and focus on discussing the problems and challenges of this technology system,aiming to provide reference for further research and development in this field.
作者 胡丹玲 孙永伟 Danling Hu;Yongwei Sun(School of Life Sciences,Inner Mongolia University,Hohhot 010000,China)
出处 《植物学报》 CAS CSCD 北大核心 2024年第3期452-462,共11页 Chinese Bulletin of Botany
基金 国家自然科学基金青年科学基金(No.31800206) 国家自然科学基金地区科学基金(No.32160111) 内蒙古自治区自然科学基金面上项目(No.2020MS03027)。
关键词 病毒 植物 基因组编辑 CRISPR/Cas virus plant genome editing CRISPR/Cas
  • 相关文献

参考文献10

二级参考文献97

  • 1Baltes, N.J., GiI-Humanes, J., Cermak, T., Atkins, P.A., and Voytas, D.F. (2014). DNA replicons for plant genome engineering. Plant Cell 26:151-163.
  • 2Cong, L., Ran, F.A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P.D., Wu, X., Jiang, W., Marraffini, L.A., et al. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science 339:819-823.
  • 3Dinesh-Kumar, S.P., Anandalakshmi, R., Marathe, R., Schiff, M., and Liu, Y. (2003). Virus-induced gene silencing. Methods Mol. Biol. 236:287-294.
  • 4Martin-Hemandez, A.M., and Baulcombe, D.C. (2008). Tobacco rattle virus 16-kilodalton protein encodes a suppressor of RNA silencing that allows transient viral entry in meristems. J. Virol. 82:4064-4071.
  • 5Marton, I., Zuker, A., Shklarman, E., Zeevi, V., Tovkach, A., Roffe, S., Ovadis, M., Tzfira, T., and Vainstein, A. (2010). Nontransgenic genome modification in plant cells. Plant Physiol. 154:1079-1087.
  • 6Nekrasov, V., Staskawicz, B., Weigel, D., Jones, J.D., and Kamoun, S. (2013). Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat. Biotechnol. 31:691-693.
  • 7Pennisi, E. (2010). Sowing the seeds for the ideal crop. Science 327 802-803.
  • 8Puchta, H., and Fauser, F. (2014). Synthetic nucleases for genome engineering in plants: prospects for a bright future. Plant J. 78: 727-741.
  • 9Shan, Q., Wang, Y., Li, J., Zhang, Y., Chen, K., Liang, Z., Zhang, K., Liu, J., Xi, J.J., Qiu, J.L., et ah (2013). Targeted genome modification of crop plants using a CRISPR-Cas system. Nat. Biotechnol. 31:686-688.
  • 10Voytas, D.F. (2013). Plant genome engineering with sequence-specific nucleases. Annu. Rev. Plant Biol. 54:327-350.

共引文献131

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部