期刊文献+

初值方法求解柱几何线性磁流体内扭曲模和撕裂模问题

Using the Initial Value Method to Solve the Twisted and Teared Mode Problems in a Linear Magnetic Fluid with Cylindrical Geometry
下载PDF
导出
摘要 基于非约化可压缩的磁流体模型开发了求解磁流体不稳定性问题的线性初值程序。使用初值程序研究了m/n=2/1撕裂模和m/n=1/1内扭曲模的增长率和模结构,并与本征值程序的结果进行了对比。结果表明:初值程序和本征值程序的结果吻合。分析了初值方法中增长率对时间步长和网格的依赖关系,给出了相应的时间步长取值估算式,解决了时间步长取值问题。当网格数较大时,初值程序在计算效率上展示出了极大的优势。此外,初值程序得到的解是唯一的,这可以省去复杂的本征值筛选流程。 Based on the non-reduced compressible magnetofluid model,a linear initial value program for solving the instability problem of magnetofluids is developed.The growth rate and the structure of the m/n=2/1 tearing mode and the m/n=1/1 internal distortion mode are studied by using the initial value program,and the results are compared with those obtained by the eigenvalue program.The results show that the results obtained by the initial value program and the eigenvalue program are in good agreement.The dependence of the growth rate on the time step and the number of meshes in the initial value method is analyzed,and the corresponding time step estimation formula is given to solve the problem of time step value.When the number of meshes is large,the initial value program shows great advantages in computing time.In addition,the solution obtained by the initial value program is unique,which can save the complex process of eigenvalue selection.
作者 陈坤杰 张定宗 马骏 Chen Kunjie;Zhang Dingzong;Ma Jun(School of Physics and Electronic Engineering,Hengyang Normal University,Hengyang Hunan 421002,China;Institute of Plasma Physics,Chinese Academy of Sciences,Hefei Anhui 230031,China)
出处 《衡阳师范学院学报》 2024年第3期32-38,共7页 Journal of Hengyang Normal University
基金 湖南省教育厅科学研究项目青年项目(No.21B0648)。
关键词 磁流体不稳定性 撕裂模 内扭曲模 初值方法 magnetofluid instability tearing mode internal twisting mode initial value method
  • 相关文献

参考文献8

二级参考文献33

  • 1Fitzpatrick R, Watson P G, Waelbroeck F L. Two-fluidmagnetic island dynamics in slab geometry:determination of the island phase velocity [J]. Phys.Plasmas, 2005,12: 082510.
  • 2Gohil P, Burrell K H,Hassam A B, et al. Plasma rotationand the radial electric field during off-axis NBI in theDIII-D tokamak [J]. Plasma Phys. Contr. Fusion, 1996,38: 1243-1247.
  • 3de Vries P C, Rantamaki K M, Giround C, et al. Plasmarotation and momentum transport studies at JET [J].Plasma Phys. Contr. Fusion, 2006,48: 1693-1708.
  • 4La Haye R J, Brennan D P, Buttery R J, et al. Islands inthe stream: the effect of plasma flow on tearing stability[J]. Phys. Plasmas, 2010, 17: 056110.
  • 5Keilhacker M, the JET Team. Fusion physics progress onthe Joint European Torus (JET) [J]. Plasma Phys. Contr.Fusion, 1999,41: 301.
  • 6Luxon J L. A design retrospective of the DIII-D tokamak[J], Nucl. Fusion, 2002,42: 614.
  • 7Chen X L’ Morrison P J. Resistive tearing instability withequilibrium shear flow [J], Phys. Fluids B,1990,2: 495.
  • 8Ofman L, Chen X L, Morrison P J, et al. Resistive tearingmode instability with shear flow and viscosity [J]. Phys.Fluids B, 1991,3: 1364.
  • 9Chandra D, Sen A, Kaw P, et al. Effect of sheared flowson classical and neoclassical tearing modes [J]. Nucl.Fusion, 2005,45: 524.
  • 10Coelho R,Lazzaro E. Effect of sheared equilibriumplasma rotation on the classical tearing mode in acylindrical geometry [J]. Phys. Plasmas, 2007, 14:012101.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部