期刊文献+

Development,validation,and transportability of several machine-learned,non-exercise-based VO_(2max)prediction models for older adults

下载PDF
导出
摘要 Background:There exist few maximal oxygen uptake(VO_(2max))non-exercise-based prediction equations,fewer using machine learning(ML),and none specifically for older adults.Since direct measurement of VO_(2max)is infeasible in large epidemiologic cohort studies,we sought to develop,validate,compare,and assess the transportability of several ML VO_(2max)prediction algorithms.Methods:The Baltimore Longitudinal Study of Aging(BLSA)participants with valid VO2_(max)tests were included(n=1080).Least absolute shrinkage and selection operator,linear-and tree-boosted extreme gradient boosting,random forest,and support vector machine(SVM)algorithms were trained to predict VO_(2max)values.We developed these algorithms for:(a)the overall BLSA,(b)by sex,(c)using all BLSA variables,and(d)variables common in aging cohorts.Finally,we quantified the associations between measured and predicted VO_(2max)and mortality.Results:The age was 69.0±10.4 years(mean±SD)and the measured VO_(2max)was 21.6±5.9 mL/kg/min.Least absolute shrinkage and selection operator,linear-and tree-boosted extreme gradient boosting,random forest,and support vector machine yielded root mean squared errors of 3.4 mL/kg/min,3.6 mL/kg/min,3.4 mL/kg/min,3.6 mL/kg/min,and 3.5 mL/kg/min,respectively.Incremental quartiles of measured VO_(2max)showed an inverse gradient in mortality risk.Predicted VO_(2max)variables yielded similar effect estimates but were not robust to adjustment.Conclusion:Measured VO_(2max)is a strong predictor of mortality.Using ML can improve the accuracy of prediction as compared to simpler approaches but estimates of association with mortality remain sensitive to adjustment.Future studies should seek to reproduce these results so that VO_(2max),an important vital sign,can be more broadly studied as a modifiable target for promoting functional resiliency and healthy aging.
出处 《Journal of Sport and Health Science》 SCIE CAS CSCD 2024年第5期611-620,共10页 运动与健康科学(英文)
基金 supported in part by the Intramural Research Program of the National Institute on Aging supported by the National Cancer Institute(K01 CA234317) the San Diego State University/UC San Diego Comprehensive Cancer Center Partnership(U54 CA132384 and U54 CA132379) the Alzheimer's Disease Resource Center for Minority Aging Research at the University of California San Diego(P30 AG059299)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部