摘要
清远市渔业种质丰富,品牌突出,其产业的数字化发展已成为本地乡村振兴的重要支撑。无疑,数字技术在渔业生产/经营的降本增益、提高资源综合开发利用水平、辅助政府决策和渔业管理、禁止IUU行为、实现产业转型升级等方面具有明显效用。但同时也带来了诸多法律上的挑战,主要表现为:(1)渔业数据被窃取、泄露或被非法利用的风险;(2)知识产权侵权风险;(3)渔业数据权属纠纷;(4)数字化监管平台遭非法攻击;(5)渔业数据质量参差不齐。因此,需要通过制定渔业数据收集、存储、转换和汇交等环节的配套技术标准和准则,以及明确渔业数据评估主体、主体与数据提供方的交汇程序来完善渔业资源数据质量评估和分级分类管理体系;其次,从溯源体系的源头抓起,以渔产品生产安全和溯源数字体系完善产品责任追踪制度;再者,通过对执法人员利用监测数据实行分级分类管理并实行岗位终身责任制,实现渔业数字执法监管模式的改革。
The fishery of Qingyuan is rich in germ and its brand is prominent,which digital development has become an important support for local rural revitalization.Undoubtedly,digital technology has obvious utility in reducing the costs of fishery production/operation,improving the level of comprehensive development and utilization of resources,assisting government decision-making and fishery management,prohibiting IUU,and realizing industrial transformation and upgrading.However,it has also brought many legal challenges,mainly as:(1)the risk of fishery data being stolen,leaked or illegally used;(2)the risk of intellectual property infringement;(3)the disputes over fishery data ownership;(4)the risk of illegal attacks on digital supervision platforms;(5)the uneven quality of fishery data.Therefore,it is necessary to improve the quality assessment,data grading and classification management system of fishery data by formulating supporting technical standards and guidelines for fishery data collection,storage,conversation and convergence,as well as identifying the subject of fishery data assessment and clarifying the intersection procedures between assessment subjects and data providers.Secondly,starting from the source of the traceability system,the product responsibility tracking system should be improved with the production safety and the traceability legal system of fishery products.In addition,the reform of the fishery digitally law enforcement supervision model should be realized through the classification management of the monitoring data used by law enforcement personnel and the lifelong responsibility system of the post.
作者
宁宇
NING Yu(Law School,Guangzhou University,Guangzhou 510006,China)
出处
《清远职业技术学院学报》
2024年第4期31-41,共11页
Journal of Qingyuan Polytechnic
基金
广东省哲学社会科学规划2024年度青年项目“大数据时代粤港澳大湾区海洋环境协同治理的法律问题研究”(GD24YFX09)
广州市哲学社会科学发展“十四五”规划2022年度课题“广州推进海洋科技与产业发展研究:数字科技赋能海洋产业发展面临的法律问题”(2022GZQN34)。
关键词
渔业数据
数据权属
数据价值评估
分级分类
数字执法
fishery data
data ownership
data value assessment
grading and classification
digital law enforcement