摘要
在运动想象任务中,传统卷积神经网络难以准确表达大脑多区域协同神经活动;图卷积网络(GCN)能够在图数据中考虑节点(脑区)间的连接和关系,适于表示不同脑区的协同任务,为此提出融合注意力的滤波器组双视图GCN(AFB-DVGCN).由滤波器组构建双分支网络,提取不同频段的时域和空域信息;采用双视图图卷积空间特征提取方法实现信息互补;利用有效通道注意力机制增强特征和捕捉不同特征图的交互信息,以提高分类准确率.在公开数据集BCI Competition Ⅳ-2a和OpenBMI上的验证结果表明,AFB-DVGCN的分类性能良好,其分类准确率显著高于对比网络的分类准确率.
In motor imagery tasks,the brain often involves simultaneous activation of multiple regions,and traditional convolutional neural networks struggle to accurately represent the coordinated neural activity across these regions.Graph convolutional network GCN is suitable for representing the collaborative tasks of different brain regions by considering the connections and relationships between nodes(brain regions)in graph data.Attentionfused filter bank dual-view GCN(AFB-DVGCN)was proposed.A dual-branch network was constructed using filter banks to extract temporal and spatial information from different frequency bands.Information complementarity was achieved by a convolutional spatial feature extraction method for dual-view graphs.In order to improve the classification accuracy,the effective channel attention mechanism was utilized to enhance features and capture the interaction information between different feature maps.Validation results in the publicly available datasets BCI Competition IV-2a and OpenBMI show that AFB-DVGCN has achieved good classification performance,and the classification accuracy is significantly higher than that of the comparison networks.
作者
吴书晗
王丹
陈远方
贾子钰
张越棋
许萌
WU Shuhan;WANG Dan;CHEN Yuanfang;JIA Ziyu;ZHANG Yueqi;XU Meng(Faculty of Information Technology,Beijing University of Technology,Beijing 100124,China;Beijing Institute of Machinery and Equipment,Beijing 100854,China;Brainnetome Center,Institute of Automation,Chinese Academy of Sciences,Beijing 100190,China)
出处
《浙江大学学报(工学版)》
EI
CAS
CSCD
北大核心
2024年第7期1326-1335,1356,共11页
Journal of Zhejiang University:Engineering Science
基金
国家自然科学基金资助项目(12275295)
中国博士后科学基金面上项目(2023M740171)。
关键词
脑机接口
运动想象
深度学习
图卷积网络
注意力机制
brain-computer interface
motor imagery
deep learning
graph convolutional network
attention mechanism