摘要
针对微纳制造产业及生命科学领域中黏合剂及活性药物的用量难以保证其精准度的问题,文中提出了一种基于图像边界提取的超微量胶滴形状参数在线检测方法。引入机器视觉对超微量胶滴的转移及成型过程进行在线检测,通过对超微量胶滴图像的实时采集,选用合适的图像处理方法及程序算法获取连续点胶过程中fL~pL级胶滴的形状参数,结果表明在线检测误差不超过5%。解决了超微量胶滴由于尺寸过小而难以测量的问题,保证了微纳制造及生命科学领域中液体分配的精确度与时效性,为精密器件的封装与活性药物的转移提供了精准反馈。
Aiming at the problem that it is difficult to ensure the accuracy of the dosage of adhesives and active drugs in micro-nano manufacturing industry and life sciences,this paper proposes an online detection method for shape parameters of ultra-micro glue droplets based on image boundary extraction.Machine vision is introduced to detect the transfer and molding process of ultra-micro glue droplets online,and through the real-time acquisition of ultra-micro glue droplet images,appropriate image processing methods and program algorithms are selected to obtain the shape parameters of fL~pL level droplets in the continuous dispensing process,and the results show that the online detection error does not exceed 5%.It solves the problem that ultra-micro rubber droplets are difficult to measure due to their small size,ensures the accuracy and timeliness of liquid dispensing in micro-nano manufacturing and life sciences,and provides accurate feedback on the packaging of precision devices and the transfer of active drugs.
作者
蒋申彗
刘慧芳
李福选
JIANG Shenhui;LIU Huifang;LI Fuxuan(Shenyang University of Technology,Faculty of Mechanical Engineering,Shenyang 110870,China)
出处
《机械工程师》
2024年第7期86-89,共4页
Mechanical Engineer
关键词
超微量胶滴
在线检测
形状参数
ultra-micro glue droplets
online detection
shape parameters