摘要
为明确吉林省2003—2022年育成的大豆品种(系)的遗传距离和亲缘关系,选取2003—2022年育成的299份大豆品种(系)为试验材料,利用覆盖大豆基因组的SNP标记对其进行遗传多样性和群体结构分析。结果表明:1)3240个SNP标记在参试材料中共检测出A/A、A/G、A/T等16种基因型,分子标记多态信息量(PIC)范围为0.0099~0.5561,平均值0.3184;使用Powermarker vision 3.25软件,得到样本群体等位基因频率为0.6883、平均PIC为0.3185。2)参试材料间遗传相似系数在44.86%~95.46%,平均为63.40%;其中,遗传相似系数在60%~70%的材料最多,样本数为170份,占参试材料的56.86%。3)根据遗传距离将参试材料划分为4个类群,Ⅰ、Ⅱ、Ⅲ、Ⅳ类群分别含有8、3、115、173份品种(系);来源于同一育种单位的品种(系)一般划分到同一类群。4)进一步利用STRUCTURE进行遗传结构预测,结果显示K=4,表明参试的299份品种(系)可被划分成4组独立的遗传结构类群;第1、2、3、4遗传结构类群分别含有24、18、105、152份品种(系),第1遗传结构类群含祖先遗传物质最多,第2、3、4遗传结构类群中外引遗传物质占比逐渐增多,第4遗传结构类群中外引遗传物质占比为46.80%。综上,参试大豆品种群体总的遗传背景相对狭窄,但随着外引遗传物质的引入,第4遗传结构类群(152份)的遗传多样性显著高于总体水平。
In order to clarify the genetic distance and relatedness of soybean varieties/lines in Jilin Province from 2003 to 2022,299 soybean varieties/lines from 2003 to 2022 were selected as test materials and analyzed for genetic diversity and population structure using SNP markers covering the soybean genome.The results showed that:1)A total of 3240 SNP markers detected a total of 16 genotypes including A/A,A/G and A/T in the participating materials.The molecular marker polymorphic information content(PIC)was ranged from 0.0099 to 0.5561 with an average value of 0.3184.The results obtained by using software of Powermarker vision 3.25 showed that the allele frequency of the sample population was 0.6883 and the average PIC value was 0.3185.2)The genetic similarity coefficient among the participating materials was ranged from 44.86%to 95.46%with an average value of 63.40%;Among them,the materials with genetic similarity coefficients ranging from 60%to 70%contained the most materials.The number of samples was 170,which accounted for 56.86%of the participating materials.3)According to the genetic distances,the tested materials were classified into 4 populations,populationⅠ,Ⅱ,ⅢandⅣcontained 8,3,115,173 varieties/lines,respectively.The varieties/lines originating from the same breeding unit were generally classified into 1 population.4)The genetic structure prediction was further carried out by using STRUCTURE,and the results was K=4,which indicated that the 299 varieties/lines of the participating materials could be classified into 4 groups of independent genetic population.The 1st,2nd,3rd,and 4th genetic population contained 24,18,105,152 varieties/lines,respectively.The 1st genetic population contains the most ancestral genetic material,while the 2nd,3rd and 4th genetic population gradually increased the proportion of the introduced genetic material and the 4th genetic population introduced genetic material accounted for 46.8%.In conclusion,the total genetic background of the tested soybean variety populations was relatively narrow.However,the genetic diversity of the 4th genetic population(152 copies/lines)was significantly higher than the overall level due to the use of introduced genetic material.
作者
吕叶
董青松
陈亮
侯云龙
刘德泉
王跃强
张君
王新风
张玲
于维
邱红梅
LV Ye;DONG Qingsong;CHEN Liang;HOU Yunlong;LIU Dequan;WANG Yueqiang;ZHANG Jun;WANG Xinfeng;ZHANG Ling;YU Wei;QIU Hongmei(College of Agriculture,Jilin Agricultural University,Changchun 130118,China;Soybean Research Institute/Key Laboratory of Hybrid Soybean Breeding of Ministry of Agriculture and Rural Affairs,Jilin Academy of Agricultural Sciences,Changchun 130033,China;General Station of Seed Management,Jilin Province,Changchun 130031,China)
出处
《中国农业大学学报》
CAS
CSCD
北大核心
2024年第7期148-160,共13页
Journal of China Agricultural University
基金
国家重点研发计划(2021YFD1201603)
吉林省农业科学院基本科研经费项目(KYJF2023DX002)。
关键词
大豆
品种
SNP分子标记
遗传多样性
聚类分析
soybean
variety
SNP molecular markers
genetic diversity
cluster analysis