摘要
Fe-based biodegradable materials have attracted significant attention due to their exceptional mechanical properties and favorable biocompatibility.Currently,research on Fe-based materials mainly focuses on regulating the degradation rate.However,excessive release of Fe ions during material degrada-tion will induce the generation of reactive oxygen species(ROS),leading to oxidative stress and ferroptosis.Therefore,the con-trol of RoS release and the improvement of biocompatibility for Fe-based materials are very important.In this study,new Fe-Zn alloys were prepared by electrodeposition with the intention of using Zn as an antioxidant to reduce oxidative damage during alloy degradation.Initially,the impact of three potential degra-dation ions(Fe^(2+),Fe^(3+),Zn^(2+))from the Fe-Zn alloy on human endothelial cell(EC)activity and migration ability was investigated.Subsequently,cell adhesion,cell activity,ROs production and DNA damage were assessed at various locations surrounding the alloy.Finally,the influence of different concentrations of Zn^(2+) in the medium on cell viability and ROS production was evaluated.High levels of ROS exhibited evident toxic effects on ECs and promoted DNA damage.As an antioxidant,Zn?+effectively reduced ROS production around Fe and improved the cell viability on its surface at a concentration of 0.04 mmol/l.These findings demonstrate that Fe-Zn alloy can attenuate the ROS generated from Fe degradation therebyenhancingcytocompatibility.
基金
supported by“the Fundamental Research Funds for the Central Universities”of China(DUT23YG229,DUT22YG118)
SEM and EPMA data were obtained using equipment(IT800-SHL,JXA-8530F PLUS)maintained by the School of Materials Science and Engineering,Dalian University of Technology.