期刊文献+

Implications of mosquito metabolism on vector competence

原文传递
导出
摘要 Mosquito-borne diseases(MBDs)annually kill nearly half a million people.Due to the lack of effective vaccines and drugs on most MBDs,disease prevention relies primarily on controlling mosquitoes.Despite huge efforts having been put into mosquito control,eco-friendly and sustainable mosquito-control strategies are still lacking and urgently demanded.Most mosquito-transmitted pathogens have lost the capacity of de novo nutrition biosynthesis,and rely on their vertebrate and invertebrate hosts for sustenance during the long-term obligate parasitism process.Therefore,a better understanding of the metabolic interactions between mosquitoes and pathogens will contribute to the discovery of novel metabolic targets or regulators that lead to reduced mosquito populations or vector competence.This review summarizes the current knowledge about the effects of mosquito metabolism on the transmission of multiple pathogens.We also discuss that research in this area remains to be explored to develop multiple biological prevention and control strategies for MBDs.
出处 《Insect Science》 SCIE CAS CSCD 2024年第3期674-682,共9页 昆虫科学(英文版)
基金 supported by grants from the National Natural Science Foundation of China(U1902211) Shanghai Pilot Program for Basic Research-Fudan University(22TQ015)to Jingwen Wang.
  • 相关文献

参考文献5

二级参考文献53

  • 1袁哲明,李方一,胡湘粤,张中霏.基于地统计学的二化螟种群时间格局分析[J].应用生态学报,2006,17(4):673-677. 被引量:12
  • 2OZLEM CAKMAK,MEHMET BASHAN,HALIL BOLU.The fatty acid compositions of predator Piocoris luridus (Heteroptera: Lygaeidae) and its host Monosteria unicostata (Heteroptera: Tingidae) reared on almond[J].Insect Science,2007,14(6):461-466. 被引量:1
  • 3Back, AT. and Lundkvist, A (2013) Dengue viruses - an overview. Infection Ecology & Epidemiology, 3(3), doi: 1 0.3402/iee.v3iO.19839.
  • 4Barillas-mury, C., Han, YS., Seeley, D. and Kafatos, F.C. (1999) Anopheles gambiae Ag-STAT, a new insect member of the STAT family, is activated in response to bacterial infection. EMBOJournal, 18,959-967.
  • 5Barletta, AB.F., Silva, M.C.L.N. and Sorgine, M.H.F. (2012) Validation of Aedes aegypti Aag-2 cells as a model for insect immune studies. Parasites & Vectors, 5, 1-9.
  • 6Bhatt, S., Gething, P.w., Brady, OJ., Messina, J.P., Farlow, A.W., Moyes, C.L., Drake, 1.M., Brownstein, 1.S., Hoen, A.G., Sankoh, 0., Myers, M.F., George, D.B., Jaenisch, T., Wint, G.R., Simmona, C.P., Scott, T'W, Farrar, 1.1. and Hay, S.I. (2013) The global distribution and burden of dengue. Nature, 496,504--507.
  • 7Blagrove, M.S., Arias-Goeta, C., Failloux, A.B. and Sinkins, S.P. (2012) Wolbachia strain wMel induces cytoplasmic incompatibility and blocks dengue transmission in Aedes albopictus. Proceedings of the National Academy of Sciences of the United States of America, 109,255-260.
  • 8Blandin, S. and Levashina, E.A (2004) Thioester-containing proteins and insect immunity. Molecular Immunology, 40, 903-908.
  • 9Bonizzoni, M., Dunn, W.A, Campbell, C.L., Olson, K.E., Marinotti, O. and James, AA (2012) Complex modulation of the Aedes aegypti transcriptome in response to dengue virus infection. PLoS ONE, 7, e50512.
  • 10Bushati, N. and Cohen, S.M. (2007) microRNA functions. Annual Review of Cell and Developmental Biology, 23175- 23205.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部