期刊文献+

基于深度学习的语音处理实时性优化

Real-Time Optimization of Speech Processing Based on Deep Learning
下载PDF
导出
摘要 针对基于深度学习的语音处理系统在实时性方面面临的挑战,提出一种连接剪枝的优化方法,旨在提高语音识别的实时性。通过深入研究基于深度学习的语音识别系统的基本原理,引入连接剪枝的方法对循环神经网络(Recurrent Neural Network,RNN)进行实时性方面的优化。采用Libri Speech数据集对优化方法和传统方法进行对比实验,结果表明优化方法能够有效提高模型的识别准确性和运行效率。 Aiming at the real-time challenge of speech processing system based on deep learning,an optimization method of connection pruning is proposed to improve the real-time performance of speech recognition.Through in-depth study of the basic principle of speech recognition system based on deep learning,the method of connecting pruning is introduced to optimize the realtime performance of Recurrent Neural Network(RNN).The LibriSpeech data set is used to compare the optimization method with the traditional method,and the results show that the optimization method can effectively improve the recognition accuracy and operation efficiency of the model.
作者 赵颖颖 贾凤勤 ZHAO Yingying;JIA Fengqin(Zhengzhou University of Industrial Technology,Zhengzhou 451100,China)
出处 《电声技术》 2024年第5期52-54,共3页 Audio Engineering
关键词 深度学习 语音识别 循环神经网络(RNN) 连接剪枝 deep learning speech recognition Recurrent NeuralNetwork(RNN) connecting pruning
  • 相关文献

参考文献10

二级参考文献67

  • 1俞铁城 周健来 等.基于神经网络/隐马尔可夫模型的混合语音识别方法的研究现状.第5届全国人机语音通讯学术会议论文集[M].哈尔滨,1998.18-21.
  • 2李全在 陈道文.基于混合HMM/ANN方法的汉语连续数字识别系统.第5届全国人机语音通讯学术会议论文集[M].哈尔滨,1998.166-168.
  • 3李全在,第五届全国人机语音通讯学术会议论文集,1998年,166页
  • 4俞铁城,第五届全国人机语音通讯学术会议论文集,1998年,18页
  • 5Schwenk H. Continuous Space Language Models. Computer Speech and Language, 2007, 21 (3) : 492-518.
  • 6Bengio Y, Ducharme R, Vincent P, et al. A Neural Probabilistie Language Model. Journal of Machine Learning Research, 2003, 3 : 1137-1155.
  • 7Mikolov T, Karafiett M, Burger L, et al. Recurrent Neural Network Based Language Model//Proc of the 11 th Annual Conference of the International Speech Communication Association. Makuhari, Japan, 2010:1045-1048.
  • 8Mikolov T, Kombrink S, Burget L, et al. Extensions of Recurrent Neural Network Language Model// Proc of the IEEE International Conference on Acoustics , Speech and Signal Processing . Prague ,Czech Republic, 2011 : 5528-5531.
  • 9Bengio Y, Simard P, Frasconi P. Learning Long-Term Dependen- cies with Gradient Descent Is Difficult. IEEE Trans on Neural Net- works, 1994, 5(2): 157-166.
  • 10Son L H, Allauzen A, Yvon F. Measuring the Influence of Long Range Dependencies with Neural Network Language Models//Prec of the NAACL-HLT Workshop : Will We Ever Really Replace the N- gram Model.'? On the Future of Language Modeling for HLT. Man- treal, Canada, 2012:1-10.

共引文献662

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部