摘要
遥感数据规模庞大且增长迅速,目前可公开访问的遥感影像数据已接近EB级别,然而类型多样、结构复杂、存储文件大等特点给大规模开放遥感数据的发现、共享与使用带来诸多不便。在线地图可使用户无须下载便可对海量云端遥感数据执行可视化分析,是一种高效的数据服务方式。针对传统地图技术方案存在的瓦片渲染效率低、遥感数据适配性差等问题,从遥感数据时空属性特征及用户访问行为特征出发,依托遥感数据云平台GSCloud,设计并实现面向海量遥感数据的高效地图服务平台TiMap。TiMap由分布式地图瓦片渲染引擎TiRender与分布式地图瓦片缓存TiCache构成。TiRender通过将地图瓦片渲染操作转换为分布式环境下的同步实时渲染任务与异步批量预渲染任务,充分利用多节点并行计算的优势,快速响应客户端的地图瓦片请求。TiCache负责缓存TiRender产生的地图瓦片,以提升后续重复地图瓦片请求的响应速度,TiCache中的地图瓦片缓存分配算法基于疏远度实现,可以保证多节点的负载均衡。实验结果表明,TiRender与TiCache均比同类技术方案的性能更好,两者协同工作可使TiMap在100ms内快速响应大规模地图瓦片请求。
Remote sensing data are witnessing a rapid growth,with the volume of publicly available remote sensing images expected to reach the Exabyte(EB)scale.However,diverse product types,complex internal structures,and large file sizes pose many challenges to the discovery and sharing of large-scale open remote sensing data.Online maps provide an efficient and effortless method for users to perform online visualization analyses of massive cloud remote sensing images without downloading.Given the low rendering efficiency of map tiles and the poor adaptability of remote sensing data in traditional map technologies,this paper introduces TiMap,an efficient big web map platform for large-scale,multi-source remote sensing data.By leveraging the spatiotemporal attributes and user access behavior characteristics of remote sensing data on the GSCloud platform,TiMap enhances the performance and adaptability of remote sensing data rendering.TiMap comprises a distributed map tile rendering module(TiRender)and a distributed map tile cache module(TiCache).TiRender transforms map tile rendering operations into synchronous real-time rendering and asynchronous batch pre-rendering tasks,leveraging multi-node parallel computing for the rapid response of map tiles.The map tiles generated by TiRender are then cached and managed by TiCache.TiCache distributes map tiles over multi-cache nodes based on layer diversity,which maintains the workload balance of all cache nodes.Experiments demonstrate that TiRender and TiCache outperform other similar technologies.Their collaborative functionality enables TiMap to respond quickly to largescale map tile requests within 100 ms.
作者
周小华
周园春
孟珍
王学志
ZHOU Xiaohua;ZHOU Yuanchun;MENG Zhen;WANG Xuezhi(Computer Network Information Center,Chinese Academy of Sciences,Beijing 100083,China;University of Chinese Academy of Sciences,Beijing 100049,China)
出处
《计算机工程》
CAS
CSCD
北大核心
2024年第7期227-239,共13页
Computer Engineering
基金
中国科学院前沿科学重点研究计划项目(ZDBS-LY-DQC016)。