期刊文献+

基于注意力增强与特征融合的中文医学实体识别

Chinese Medical Entity Recognition Based on Attention Enhancement and Feature Fusion
下载PDF
导出
摘要 针对基于字符表示的中文医学领域命名实体识别模型嵌入形式单一、边界识别困难、语义信息利用不充分等问题,一种非常有效的方法是在Bret底层注入词汇特征,在利用词粒度语义信息的同时降低分词错误带来的影响,然而在注入词汇信息的同时也会引入一些低相关性的词汇和噪声,导致基于注意力机制的Bret模型出现注意力分散的情况。此外仅依靠字、词粒度难以充分挖掘中文字符深层次的语义信息。对此,提出基于注意力增强与特征融合的中文医学实体识别模型,对字词注意力分数矩阵进行稀疏处理,使模型的注意力集中在相关度高的词汇,能够有效减少上下文中的噪声词汇干扰。同时,对汉字发音和笔画通过卷积神经网络(CNN)提取特征,经过迭代注意力特征融合模块进行融合,然后与Bret模型的输出特征进行拼接输入给Bi LSTM模型,进一步挖掘字符所包含的深层次语义信息。通过爬虫等方式搜集大量相关医学语料,训练医学领域词向量库,并在CCKS2017和CCKS2019数据集上进行验证,实验结果表明,该模型F1值分别达到94.90%、89.37%,效果优于当前主流的实体识别模型,具有更好的识别效果。 To address problems such as single embedding forms,difficult boundary recognition,and insufficient use of semantic information in Chinese medical named entity recognition models based on character representation,an effective method is to inject lexical features at the bottom of Bret.This approach reduces the impact of word segmentation errors while utilizing word granularity semantic information.However,some low correlation words and noise are introduced when vocabulary information is injected,leading to attention distraction in the Bret model based on the attention mechanism.In addition,it is difficult to fully mine deep semantic information of Chinese characters by relying solely on word granularity.Therefore,this study proposes a Chinese medical entity recognition model based on attention enhancement and feature fusion.The sparse processing of the attention score matrix of words causes the model to focus on words with a high correlation,which can effectively reduce the interference of noisy words in the context.Simultaneously,Convolutional Neural Networks(CNNs)are used to extract the features of Chinese pronunciation and strokes,which are fused with the output features of the Bret model through an iterative attention feature fusion module and subsequently concatenated to the BiLSTM model to further mine the deep semantic information contained in characters.During the experiment,a large number of relevant medical corpora is collected using a crawler and other methods.Further,a medical field word vector library is trained and verified on the CCKS2017 and CCKS2019 datasets.The experimental results show that the F1 values of the model reach 94.90% and 89.37%,respectively,which are higher than those with current mainstream entity recognition models.Therefore,the proposed model exhibits higher recognition performance.
作者 王晋涛 秦昂 张元 陈一飞 王廷凤 谢承霖 邹刚 WANG Jintao;QIN Ang;ZHANG Yuan;CHEN Yifei;WANG Tingfeng;XIE Chenglin;ZOU Gang(School of Computer Science and Technology,North University of China,Taiyuan 030051,Shanxi,China;Hunan Provincial Tumor Hospital,Changsha 410031,Hunan,China;The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine,Changsha 410006,Hunan,China;Hunan ZK Help Innovation Intelligent Technology Research Institute,Changsha 410076,Hunan,China)
出处 《计算机工程》 CAS CSCD 北大核心 2024年第7期324-332,共9页 Computer Engineering
基金 湖南省自然科学基金(2022JJ70022)。
关键词 实体识别 中文分词 注意力稀疏 特征融合 医学词向量库 entity recognition Chinese word segmentation sparse attention feature fusion medical word vector library
  • 相关文献

参考文献4

二级参考文献49

  • 1付秀,陈麒麟,李杰,付毅,包国峰.基于智能预问诊的全景多学科会诊平台的设计与应用[J].中国数字医学,2021,16(10):79-82. 被引量:7
  • 2李妮,关焕梅,杨飘,董文永.基于BERT-IDCNN-CRF的中文命名实体识别方法[J].山东大学学报(理学版),2020,55(1):102-109. 被引量:53
  • 3J. Lafferty,A. McCallum,and F. Pereira.Conditional random fields: Probabilistic models for segmenting and labeling sequence data[].Proc of the th Inter- national Conference on Machine Learning.2001
  • 4S. Kulick,A. Bies,and M. Liberman, et al.Integrated annotation for biomedical information extraction[].NAACL/HLT Workshop on Linking Biological Lit- erature Ontologies and Databases: Tools for Users.2004
  • 5A. S. Schwartz,and M. A. Hearst.A simple algorithm for identifying abbreviation definitions in biomedical text[].Proc of the Pacific Symposium on Biocomputing.2003
  • 6Guodong Zhou,and Jian Su.Exploring deep knowl- edge resources in biomedical name recognition[].Proc of the Joint Workshop on Natural Language Proc- essing in Biomedicine and Its Applications.2004
  • 7J. Finkel,S. Dingare,and H. Nguyen, et al.Exploiting context for biomedical entity recognition: from syntax to the Web[].Proc of the Joint Workshop on Natural Language Processing in Biomedicine and Its Appli- cations.2004
  • 8S. Burr.Biomedical named entity recognition using conditional random fields and novel feature sets[].Proc of the Joint Workshop on Natural Language Proc- essing in Biomedicine and Its Applications.2004
  • 9Tsuruoka Y,Tateishi Y,Kim J-D , et al.Developing a robust part-of-speech tagger for biomedical text[].Panhellenic Conference on Informatics.2005
  • 10王浩畅,李钰,赵铁军.面向生物医学命名实体识别的多Agent元学习框架[J].计算机学报,2010,33(7):1256-1262. 被引量:6

共引文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部