期刊文献+

LeCMPSO算法求解异构无人机协同多任务重分配问题

Learning-guided coevolution multi-objective particle swarm optimization for heterogeneous UAV cooperative multi-task reallocation problem
下载PDF
导出
摘要 无人机系统在军事领域有着广泛应用,由于战场环境复杂多变,无人机遭遇突发状况后需进行任务重分配.异构无人机是指多种类型的无人机,可完成单一无人机无法完成的多类型复杂任务,异构无人机协同多任务重分配问题约束条件复杂且包含混合变量,现有多目标优化算法不能有效处理此类问题.为高效求解上述问题,本文构建多约束异构无人机协同多任务重分配问题模型,提出一种学习引导的协同多目标粒子群优化算法(LeCMPSO),该算法引入基于先验知识的初始化策略和基于历史信息学习的粒子更新策略,能有效避免不可行解的产生并提升算法的搜索效率.通过在4组实例上的仿真实验表明,与其他典型的协同进化多目标优化算法相比,所提算法在解集的多样性、收敛性及搜索时间方面均具有较好的性能. UAV system has been widely used in military field.Due to the complex and changeable battlefield environment,UAV tasks need to be reassigned after an emergency.Heterogeneous UAVs refer to multiple types of UAVs,which can accomplish multiple types of complex tasks that a single UAV can not.The heterogeneous UAV cooperative multi-task reallocation problem has complex constraints and mixed variables,and the existing multi-objective optimization algorithms can not deal with this kind of problems effectively.In order to solve the above problems efficiently,a multi-constraint heterogeneous UAVs cooperative multi-task reallocation model is constructed at first in this paper,and a learning-guided cooperative multi-objective particle swarm optimization algorithm(LeCMPSO)is proposed to solve that.In LeCMPSO,a prior knowledge based initialization strategy as well as a history information learning based particle update strategy are introduced to avoid the generation of infeasible solutions and improve the search efficiency of the algorithm.The simulation results on 4 sets of examples show that the proposed algorithm outperforms the other typical coevolutionary multi-objective optimization algorithms on diversity of solution sets,convergence,and search time.
作者 王峰 付青坡 韩孟臣 邢立宁 吴虎胜 WANG Feng;FU Qing-po;HAN Meng-chen;XING Li-ning;WU Hu-sheng(School of Computer Science,Wuhan University,Wuhan Hubei 430072,China;College of System Engineering,National University of Defense Technology,Changsha Hunan 410073,China;School of Equipment Management and Support,Armed Police Force Engineering University,Xi’an Shaanxi 710086,China)
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2024年第6期1009-1017,共9页 Control Theory & Applications
基金 国家自然科学基金项目(62173258)资助。
关键词 无人机多任务重分配 粒子群优化算法 多目标优化 协同进化 UAV multi-task reallocation particle swarm optimization multi-objective optimization coevolution
  • 相关文献

参考文献15

二级参考文献245

共引文献267

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部