期刊文献+

Second-order error analysis of the averaged L1 scheme L1 for time-fractional initial-value and subdiffusion problems

原文传递
导出
摘要 Fractional initial-value problems(IVPs) and time-fractional initial-boundary value problems(IBVPs), each with a Caputo temporal derivative of order α ∈(0, 1), are considered. An averaged variant of the well-known L1 scheme is proved to be O(N^(-2)) convergent for IVPs on suitably graded meshes with N points, thereby improving the O(N^(-(2-α))) convergence rate of the standard L1 scheme. The analysis relies on a delicate decomposition of the temporal truncation error that yields a sharp dependence of the order of convergence on the degree of mesh grading used. This averaged L1 scheme can be combined with a finite difference or piecewise linear finite element discretization in space for IBVPs, and under a restriction on the temporal mesh width, one gets again O(N^(-2)) convergence in time, together with O(h^(2)) convergence in space,where h is the spatial mesh width. Numerical experiments support our results.
出处 《Science China Mathematics》 SCIE CSCD 2024年第7期1641-1664,共24页 中国科学(数学)(英文版)
基金 supported by National Natural Science Foundation of China (Grant Nos. 12101509, 12171283, 12171025 and NSAF-U1930402) the Science Foundation Program for Distinguished Young Scholars of Shandong (Overseas) (Grant No. 2022HWYQ-045)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部