摘要
上转换激光器为新一代高度集成的非线性光电应用提供了一个强大的平台,解决了现代光子集成电路不断发展对小型化、低损耗和高质量非线性光源的诉求.然而,对于具有反斯托克斯过程的上转换激光器,减小尺寸和阈值是其不可避免的巨大挑战.本文报道了一种基于CsPbBr_(3)纳米片的室温上转换等离子体纳米激光器,该激光器在较宽的尺寸范围内表现出显著的阈值降低,同时依旧保持着较高的品质因子.更激动人心的是,本文成功制造了厚度低至70 nm的小型化上转换等离子体激光器,突破光学衍射极限到深亚波长范围.同时,本文利用仿真模拟描述了双光子激发光场的分布情况,揭示了等离子体辅助激光发射并降低阈值的过程.此外,SiO_(2)绝缘层厚度依赖实验证明了双光子激发光约束强度和珀塞尔效应的可调谐特性,这为实现等离子体器件性能的有效调控提供了有效方案.本文展示了高效和低阈值的上转换等离子体纳米激光器,为片上非线性光源的发展奠定了夯实的基础.
Upconversion lasers offer a robust platform for the new generation of highly integrated nonlinear optoelectronic applications.They are central in addressing the ongoing pursuit of miniaturization,low loss,and high-quality nonlinear light sources required for modern photonic integrated circuits.However,the endeavor to minimize volume and threshold poses inevitable challenges to the anti-Stokes process within upconversion lasers.In this study,we report a potential room-temperature upconversion plasmonic nanolaser utilizing CsPbBr_(3) nanoplates.This device exhibits a significant decrease in threshold over a wide volume range while maintaining a high-quality factor.More excitingly,we have successfully fabricated the miniaturized upconversion plasmonic lasers with a thickness as low as 70 nm,breaking down the optical diffraction limit to the deep sub-wavelength regime.Through carefully plotted simulations of two-photon(TP)excitation light fields,we have revealed the intricacies of the plasmon-assisted lasing process.Furthermore,our experiments,which vary the thicknesses of the insulating SiO_(2) layer,have unveiled the tunable properties of the TP excitation light confinement intensity and the Purcell effect.These findings open up promising avenues for fine-tuning the performance of plasmonic devices.Our research underscores the efficiency and low-threshold attributes of upconversion plasmonic nanolasers,heralding them as potent candidates for onchip nonlinear light sources.
作者
张全龙
翟继新
刘晨曦
钟倩倩
纪志强
易潇
钟阳光
何承林
骆子煜
汪练成
陈舒拉
潘安练
Quanlong Zhang;Jixin Zhai;Chenxi Liu;Qianqian Zhong;Zhiqiang Ji;Xiao Yi;Yangguang Zhong;Chenglin He;Ziyu Luo;Liancheng Wang;Shula Chen;Anlian Pan(Key Laboratory for Micro-Nano Physics and Technology of Hunan Province,Hunan Institute of Optoelectronic Integration,College of Materials Science and Engineering,School of Physics and Electronics,Hunan University,Changsha 410082,China;School of Mechanical and Vehicle Engineering,Hunan University,Changsha 410082,China;School of Physics and Electronics,Hunan University,Changsha 410082,China;State Key Laboratory of Precision Manufacturing for Extreme Service Performance,College of Mechanical and Electrical Engineering,Central South University,Changsha 410083,China)
基金
supported by the National Natural Science Foundation of China(62090035,U19A2090,61905071)
the Key Program of the Hunan Provincial Science and Technology Department(2019XK2001,2020XK2001)
the International Science and Technology Innovation Cooperation Base of Hunan Province(2018WK4004)
the China Postdoctoral Science Foundation(2022TQ0100)
the National Key Research and 288 Development Program of China(2022YFB3604701).