期刊文献+

Towards hydrometeorological thresholds of reservoir-induced landslide from subsurface strain observations

原文传递
导出
摘要 Synergistic multi-factor early warning of large-scale landslides is a crucial component of geohazard prevention and mitigation efforts in reservoir areas.Landslide forecasting and early warning based on surface displacements have been widely investigated.However,the lack of direct subsurface real-time observations limits our ability to predict critical hydrometeorological conditions that trigger landslide acceleration.In this paper,we leverage subsurface strain data measured by high-resolution fiber optic sensing nerves that were installed in a giant reservoir landslide in the Three Gorges Reservoir(TGR)region,China,spanning a whole hydrologic year since February 2021.The spatiotemporal strain profile has preliminarily identified the slip zones and potential drivers,indicating that high-intensity short-duration rainstorms controlled the landslide kinematics from an observation perspective.Considering the time lag effect,we reexamined and quantified potential controls of accelerated movements using a data-driven approach,which reveals immediate response of landslide deformation to extreme rainfall with a zero-day shift.To identify critical hydrometeorological rules in accelerated movements,accounting for the dual effect of rainfall and reservoir water level variations,we thus construct a landslide prediction model that relies upon the boosting decision tree(BDT)algorithm using a dataset comprising daily rainfall,rainfall intensity,reservoir water level,water level fluctuations,and slip zone strain time series.The results indicate that landslide acceleration is most likely to occur under the conditions of mid-low water levels(i.e.,<169.700 m)and large-amount and high-intensity rainfalls(i.e.,daily rainfall>57.9 mm and rainfall intensity>24.4 mm/h).Moreover,this prediction model allows us to update hydrometeorological thresholds by incorporating the latest monitoring dataset.Standing on the shoulder of this landslide case,our study informs a practical and reliable pathway for georisk early warning based on subsurface observations,particularly in the context of enhanced extreme weather events.
出处 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2024年第6期1907-1922,共16页 中国科学(技术科学英文版)
基金 supported by the National Science Fund for Distinguished Young Scholars(Grant No.42225702) the National Natural Science Foundation of China(Grant No.42077235) the Maria Sklodowska-Curie Action(MSCA)-UPGRADE(mUltiscale IoT equipPed lonG linear infRastructure resilience built and sustAinable DevelopmEnt)project HORIZON-MSCA-2022-SE-01(Grant No.101131146) the China Scholarship Council(CSC)for funding his research period at UNIPD and CNRIRPI。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部