摘要
Semitransparent organic solar cells(ST-OSCs)have garnered considerable attention as promising renewable energy technology for integrating photovoltaics into buildings.However,there is a trade-off between power conversion efficiency(PCE)and average visible transmittance(AVT),which hinders the achievement of a high light utilization efficiency(LUE).In this study,we propose a valuable method to address this challenge by replacing the transparent top electrode,Ag,with a 20 nm layer of Au.The ST-OSCs based on the 20 nm Au electrode demonstrate superior exciton extraction,more efficient charge collection,and higher color-rendering index(CRI)due to their smoother surface,higher conductivity,and enhanced visible light transmittance,resulting in a significantly higher PCE of 13.67%and an enhanced AVT of 30.17%,contributing to a high LUE of 4.15%.Additionally,optically transparent dielectric layers,applied on the front and back sides of the ST-OSCs to further boost performance,delivered an impressive LUE of 4.93%,with PCE and AVT values reaching 14.44%and 34.12%,respectively.Notably,the champion ST-OSCs also exhibited a favorable CRI value of 93.37.These achievements represent the bestperforming ST-OSCs to date with both high LUE and CRI and hold significant implications for the prospective commercialization of ST-OSCs.
基金
financially supported from the National Natural Science Foundation of China(5220235)
academic funding supported by Soochow University(NH10900123)
the Gusu Innovation and Entrepreneurship Leading Talents Program(ZXL2023184)
the Natural Science Foundation of Jiangsu Higher Education Institutions of China(22KJB150033)。