摘要
结合群类理论,将群类S_(p)^(*)拓展到群类S_(p)^(2)^(*)和S_(p)^(3)^(*),并由此定义S_(p)^(i)^(*)-可补子群,i=1,2,3。进一步利用Sylow p-子群的极大子群的S_(p)^(i)^(*)-可补性质研究广义p-可解群的构造。
Using the theory of group classes,the group classes S_(p)^(2)^(*)and S_(p)^(3)^(*)are obtained by generalizing the group class S_(p)^(*),and S*p i-supplemented subgroups are defined,where i=1,2,3.Furthermore,the structure of generalized p-solvable groups is studied by using S_(p)^(i)^(*)-supplemented property of maximal subgroups of Sylow p-subgroup.
作者
高百俊
汤菊萍
高志超
宋菊
GAO Baijun;TANG Juping;GAO Zhichao;SONG Ju(School of Mathematics and Statistics,Yili Normal University,Yining 835000,Xinjiang,China;Department of Fundamental Courses,Wuxi Institute of Technology,Wuxi 214121,Jiangsu,China;School of Mathematics and Statistics,Central China Normal University,Wuhan 430079,Hubei,China;School of Mathematical Sciences,Yangzhou University,Yangzhou 225002,Jiangsu,China)
出处
《山东大学学报(理学版)》
CAS
CSCD
北大核心
2024年第6期98-102,共5页
Journal of Shandong University(Natural Science)
基金
国家自然科学基金资助项目(12371018,11701223)
江苏省高等学校基础科学(自然科学)研究项目(22KJB110024)
新疆维吾尔自治区天山青年计划资助项目(2020Q023)
伊犁师范大学提升学科综合实力专项自科一般项目(22xkzy19)。