期刊文献+

金属钛辐照级联过程缺陷演化的分子动力学模拟

Molecular Dynamics Simulation on Irradiation-induced Defect Evolution in Titanium
下载PDF
导出
摘要 钛合金材料因其优异的耐腐蚀性能和机械性能被认为是反应堆的候选结构材料。本文围绕材料服役过程中的辐照损伤机制问题,采用分子动力学(MD)方法研究了金属钛(以α-Ti为例)的辐照级联过程,获得了不同温度(300、500、700和900 K)、不同能量(1、5、10和20 keV)的初级碰撞原子(PKA)沿不同晶格方向([0001]、[1010]和[1100])入射的碰撞过程,并从原子尺度分析了α-Ti在辐照级联过程下的缺陷演化行为及机制。结果表明,随着温度升高,α-Ti级联碰撞过程诱发的峰值点缺陷数明显增加,缺陷复合过程所需时间延长;随着PKA能量增加,整个缺陷演化过程的缺陷数均明显增加,稳定缺陷数也呈增加趋势;而PKA入射方向对级联过程中缺陷演化无明显影响。采用NRT(Norgett-Robinson-Torrens)模型计算获得α-Ti辐照缺陷随PKA能量的变化趋势与MD计算结果一致,级联碰撞后剩余的缺陷数约占NRT预测值的30%。本文从微观角度研究了金属钛的辐照损伤机理,相关计算结果为钛合金在未来核反应堆中的应用提供数据支持,为新型耐辐照材料研发提供理论依据。 Titanium base alloys can be used as potential candidate of structural materials in nuclear reactor due to their outstanding corrosion resistance and mechanical properties.By using molecular dynamics(MD)methods,this paper simulated the displacement cascade processes inα-Ti metal at various temperatures(T=300,500,700 and 900 K)with primary knock-on atom(PKA)(E_(PKA)=1,5,10 and 20 keV)incident in various directions([0001],[1010]and[1100]).The displacement cascades were designed as follows,the model was initially relaxed at each specified temperature for 10 ps with periodic boundary conditions applied.Then,a PKA was randomly selected and assigned specific kinetic energy to initiate the displacement cascade.At length,the data production,defect analysis and visualization were done to elucidate the irradiation cascade processes.The results show that the defect number increases with the increase of PKA energy or temperature,whereas the incident directions of PKA does not affect the defect number during the evolution a lot.With the increase of temperature,the number of peak defects inα-Ti increase significantly,and the time required for the defect recombination process extends.With the increase of PKA energy,the number of defect in the entire defect evolution process increases significantly,and the steady-state defect number also shows an increasing tendency.However,the PKA incident direction has slightly effect on the defect evolution during the cascade process.The Norgett-Robinson-Torrens(NRT)model was used to calculate the trendency of defect number as functional of PKA energy and it is consistent with the MD calculations.Considering the simulated temperature and PKA energy,and the number of remaining defects after cascade collision accounted for about 30%of NRT.The results in this paper help to understand the primary irradiation defect and atomic effect evolution mechanisms inα-Ti from the perspective of theoretical calculations.Moreover,discussing how to enhance the radiation resistance of metallic titanium and titanium alloys under the current theoretical research content has certain guiding significance for the design of future nuclear reactor shell materials.
作者 周岁茹 应红 任翠兰 尹宗军 温阿利 海雪 施海宁 黄鹤飞 章文峰 ZHOU Suiru;YING Hong;REN Cuilan;YIN Zongjun;WEN Ali;HAI Xue;SHI Haining;HUANG Hefei;ZHANG Wenfeng(School of New Energy and Materials,Southwest Petroleum University,Chengdu 610500,China;Suzhou Nuclear Power Research Institute Co.,Ltd.,Suzhou 215004,China;National Engineering Research Center for Nuclear Power Plant Safety&Reliability,Suzhou 215004,China;Shanghai Institute of Applied Physics,Chinese Academy of Sciences,Shanghai 201800,China;School of Energy and Environment,Southeast University,Nanjing 210018,China)
出处 《原子能科学技术》 EI CAS CSCD 北大核心 2024年第7期1523-1531,共9页 Atomic Energy Science and Technology
基金 国家自然科学基金(52001322) 上海市自然科学基金(23ZR1475700) 四川省科技计划(2022YFSY0040)。
关键词 Α-TI 辐照缺陷 级联碰撞 初级辐照损伤 分子动力学 α-Ti irradiation defect displacement cascade primary irradiation defect molecular dynamics
  • 相关文献

参考文献5

二级参考文献16

  • 1Орыщенко А С, Леонов В П, Кожевников О А, еt al. Титановые сплавы для изготовления реакторов малой и средней мощности [ С ]/ /Международной конференции 《Ti-2013 в CHГ》ДOHeцK, Украина, 2013: 19 -26.
  • 2Бахметьев А М, Сандлер Н Г, Былов И А. Анализ возможных причин и механизмов отказов трубных систем парогенераторов атомных судов [ J ]. Арктика: экология и экономика, 2013, 3 ( 11 ) : 97 - 101.
  • 3Ушков С С, Михайлов в И, Межонов В А. Перспективы применения малоактивируемых титановых сплаво в сварных конструкциях [ J ]. Вопросы материаловедения, 2007, 3(51): 50 -60.
  • 4Кашка М М, Мантула Н В, Пономаренко А В. Опыт и перспектива эксплуатации в Арктике атомного ледокольного флота России [ J ]. Арктика: экология и экономика, 2013, 3 ( 11 ) : 97 - 10 1 .
  • 5Колачев Б А, Полькин И С, Талалаев В Д. Титановые сплавы разных стран [ М]. Москва: ВИЛС, 2000: 1 б7 - 174.
  • 6Счастливая И А, Ушков С С, Ревин В И. Проблемы создания нормативно-технической базы титановых сплавов для обрудования, трубопроводов и корпусных конструкций атомных энергоблоков нового поколения [J]. Титан, 2009, 1(23): 50.
  • 7Орыщенко А С, Леонов В П, Счастливая И А. Титановые сплавы в атомной энергетике [ J ]. Титан, 2014,3(45): 20 -30.
  • 8靳忠敏,陈义学,韩静茹,陆道纲.C276合金质子辐照损伤模拟及活化分析[J].原子能科学技术,2009,43(6):501-504. 被引量:1
  • 9贺新福,杨文,樊胜.论FeCr合金辐照损伤的多尺度模拟[J].物理学报,2009,58(12):8657-8669. 被引量:11
  • 10Wen-Jing Xiao,Gui-Yan Wu,Mei-Heng Li,Hui-Qiu Deng,Wei Zhang,Ping Huai,Wang-Yu Hu.MD and OKMC simulations of the displacement cascades in nickel[J].Nuclear Science and Techniques,2016,27(3):53-57. 被引量:2

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部