摘要
Aravkin等人提出了求解非光滑优化问题min_(x∈R^(d))f(x)+h(x)的非光滑信赖域算法(采用f的精确梯度),其中f是连续可微函数,h是邻近有界且下半连续的真函数。文章研究当该问题中f:=1/n ∑_(i=1)^(n)f_(i)(n很大且每个分量函数fi是连续可微)时,求解这类大规模可分离非光滑优化问题的有效算法。结合非精确算法和非光滑信赖域算法的思想,提出了用非精确梯度代替精确梯度的非精确非光滑信赖域算法。与非光滑信赖域算法(采用精确梯度)相比,该算法降低了每次迭代的计算量。在一定的假设条件下,证明了算法的迭代复杂度。
Aravkin et al proposed the trust region algorithm(employing exact gradients of f)for solving the nonsmooth optimization problem min_(x∈R^(d))f(x)+h(x),where f is a continuously differentiable function and h is a lower semicontinuous and prox-bounded proper function.In the case when f:=1/n ∑_(i=1)^(n)f_(i)(n is quite big,and each component fi is continuously differentiable),the efficient algorithm for solving such kind of large-scale separable nonsmooth optimization problem is studied.Combining the concepts of the inexact algorithm and the above trust-region algorithm,it is proposed that the inexact trust-region algorithm replaces the exact gradients with the inexact gradients for solving this nonsmooth problem.Comparing with the trust-region algorithm(employing the exact gradients of f),the new algorithm can reduce the computational cost at each iteration.Under certain assumptions,the iteration complexity of this algorithm is established.
作者
李祉赟
王湘美
马德乐
LI Zhi-yun;WANG Xiang-mei;MA De-le(College of Mathematics and Statistics,Guizhou University,Guiyang,Guizhou,550025,China)
出处
《新疆师范大学学报(自然科学版)》
2024年第4期44-52,共9页
Journal of Xinjiang Normal University(Natural Sciences Edition)
基金
国家自然科学基金项目(12161017)
贵州省省级科技计划项目(ZK[2022]110)。
关键词
大规模可分离非光滑优化
非精确信赖域算法
邻近梯度算法
Large-scale separable nonsmooth optimization
Inexact trust-region algorithm
Proximal gradient method