期刊文献+

融合高分辨率影像与LiDAR的孪生对抗协同分类算法

Simese adversarial collaborative classification algorithm fusing high-resolution remote sensing and LiDAR
原文传递
导出
摘要 针对传统多模态协同分类算法在异构特征表征方面的局限性,提出一种基于孪生协同注意力对抗网络(MCA2Net)的分类算法,用于高分辨率遥感影像和LiDAR数据的融合分类。MCA2Net首先设计多尺度特征提取和多注意力机制模块,结合对抗博弈过程有效提取高阶语义特征与差异化互补信息,实现多模态数据细节特征判别性保留;同时融合对抗与分类任务构建复合损失函数进行协同训练,平衡无监督图像融合任务与监督分类任务,实现模型稳定性提升。基于Houston与云南山地数据集实验结果表明:MCA2Net算法能有效提升多模态数据的协同分类性能,研究结果可应用于城市规划、环境监测与土地利用分类等领域。 Multimodal data combination can effectively improve the accuracy of ground object classification.In view of the limitations of traditional multimodal collaborative classification algorithms in heterogeneous feature representation,this paper proposes a classification algorithm based on twin collaborative attention adversarial network(MCA?Net),using for the fusion classification of high-resolution remote sensing images and LiDAR data.MCA’Net first designed multi-scale feature extraction and multi-attention mechanism modules,combined with the adversarial game process to effectively extract high-order semantic features and differentiated complementary information,to achieve discriminative retention of detailed features of multi-modal data;at the same time,it integrated adversarial and classification tasks to build a composite loss functions are used for collaborative training to balance unsupervised image fusion tasks and supervised classification tasks to improve model stability.Experimental results based on the Houston and Yunnan-mountain data sets show that the MCA’N et al gorithm can effectively improve the collaborative classification performance of multi-modal data.The research results can be applied to urban planning,environmental monitoring,land use classification and other fields.
作者 崔杰瑞 普运伟 夏炎 饶闯江 陈如俊 CUI Jierui;PU Yunwei;XIA Yan;RAO Chuangjiang;CHEN Rujun(School of Land and Resources Engineering,Kunming University of Science and Technology,Kunming 650500,China;School of Information Engineering and Automation,Kunming University of Science and Technology,Kunming 650500,China;Yunnan Water Conservancy and Hydropower Survey and Design Institute Co.Ltd.,Kunming 650500,China)
出处 《测绘科学》 CSCD 北大核心 2024年第3期36-46,共11页 Science of Surveying and Mapping
关键词 高分辨率遥感 LIDAR数据 特征融合 对抗学习 注意力机制 high-resolution remote sensing LiDAR data feature fusion adversarial learning attention mechanism
  • 相关文献

参考文献6

二级参考文献52

  • 1姚永祥,张永军,万一,刘欣怡,郭浩宇.顾及各向异性加权力矩与绝对相位方向的异源影像匹配[J].武汉大学学报(信息科学版),2021,46(11):1727-1736. 被引量:20
  • 2张小红.利用机载LIDAR双次回波高程之差分类激光脚点[J].测绘科学,2006,31(4):48-50. 被引量:40
  • 3李晓明,郑链,胡占义.基于SIFT特征的遥感影像自动配准[J].遥感学报,2006,10(6):885-892. 被引量:154
  • 4Axelsson P. DEM generation from laser scanner data using adaptive TIN models[J].International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences,1999,(B4/1):110-117.
  • 5张小红.机载激光雷达测量技术理论与方法[M]{H}武汉:武汉大学出版社,200793-94.
  • 6Kraus K. Determination of terrain models in wooded areas with airborne laser scanner data[J].{H}ISPRS Journal of Photogrammetry and Remote Sensing,1998,(04):193-203.
  • 7Zhang K,Chen S,Whitman D,Shyu M,Yan J and Zhang C. A progressive morphological filter for removing non-ground measurements from airborne LiDAR data[J].{H}IEEE Transactions on Geoscience and Remote Sensing,2003,(04):872-882.
  • 8Vosselman G. Slope based filtering of Laser altimetry data[J].International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences,2000,(Part B3):935-942.
  • 9Sithole G,Vosselman G. Experimental comparison of filtering algorithms for bare-earth extraction from Airborne Laser Scanning point clouds[J].{H}ISPRS Journal of Photogrammetry and Remote Sensing,2004,(1-2):85-101.
  • 10Vosselman G,Gorte B G H,Sithole G,Rabbani T. Recognizing structure in laser scanner point clouds[J].International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences,2004,(8/W2):33-38.

共引文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部