摘要
针对传统多模态协同分类算法在异构特征表征方面的局限性,提出一种基于孪生协同注意力对抗网络(MCA2Net)的分类算法,用于高分辨率遥感影像和LiDAR数据的融合分类。MCA2Net首先设计多尺度特征提取和多注意力机制模块,结合对抗博弈过程有效提取高阶语义特征与差异化互补信息,实现多模态数据细节特征判别性保留;同时融合对抗与分类任务构建复合损失函数进行协同训练,平衡无监督图像融合任务与监督分类任务,实现模型稳定性提升。基于Houston与云南山地数据集实验结果表明:MCA2Net算法能有效提升多模态数据的协同分类性能,研究结果可应用于城市规划、环境监测与土地利用分类等领域。
Multimodal data combination can effectively improve the accuracy of ground object classification.In view of the limitations of traditional multimodal collaborative classification algorithms in heterogeneous feature representation,this paper proposes a classification algorithm based on twin collaborative attention adversarial network(MCA?Net),using for the fusion classification of high-resolution remote sensing images and LiDAR data.MCA’Net first designed multi-scale feature extraction and multi-attention mechanism modules,combined with the adversarial game process to effectively extract high-order semantic features and differentiated complementary information,to achieve discriminative retention of detailed features of multi-modal data;at the same time,it integrated adversarial and classification tasks to build a composite loss functions are used for collaborative training to balance unsupervised image fusion tasks and supervised classification tasks to improve model stability.Experimental results based on the Houston and Yunnan-mountain data sets show that the MCA’N et al gorithm can effectively improve the collaborative classification performance of multi-modal data.The research results can be applied to urban planning,environmental monitoring,land use classification and other fields.
作者
崔杰瑞
普运伟
夏炎
饶闯江
陈如俊
CUI Jierui;PU Yunwei;XIA Yan;RAO Chuangjiang;CHEN Rujun(School of Land and Resources Engineering,Kunming University of Science and Technology,Kunming 650500,China;School of Information Engineering and Automation,Kunming University of Science and Technology,Kunming 650500,China;Yunnan Water Conservancy and Hydropower Survey and Design Institute Co.Ltd.,Kunming 650500,China)
出处
《测绘科学》
CSCD
北大核心
2024年第3期36-46,共11页
Science of Surveying and Mapping
关键词
高分辨率遥感
LIDAR数据
特征融合
对抗学习
注意力机制
high-resolution remote sensing
LiDAR data
feature fusion
adversarial learning
attention mechanism