摘要
针对传统InSAR全流程处理在广域矿区地表形变监测中效率低无法快速响应矿区地质灾害的问题,以InSAR干涉条纹为研究对象,提出一种广域观测范围下基于改进YOLOv5s的矿区形变干涉条纹检测方法。使用迁移学习方法对网络模型进行训练,引入ECA注意力机制和ASPP模块、增加小目标网络预测层以提升网络模型对形变干涉条纹的检测精度。改进后的YOLOv5s平均精度均值为94.6%,比YOLOv5s、SSD、Faster-RCNN、YOLOv3、YOLOv7分别提升2.4%、5.7%、4.4%、2.7%、3.2%;F1-Score为89.9%,分别提升3.9%、6.9%、17.7%、2.4%、2.6%;对研究区形变干涉条纹进行检测,准确率为92.7%,误检率为4.3%。实验结果表明,该方法不仅能准确识别广域矿区形变,及时发现灾害隐患并对其进行评估与预警,还能大大提升传统InSAR形变监测效率。
Regarding the challenges of low efficiency and the inability to promptly identify geological disasters in extensive mining areas through traditional InSAR full-process processing,this paper focuses on InSAR interference fringes and proposes a method for detecting deformation interference fringes in mining areas across a large-scale observation range,based on the improved YOLOv5s.The network model is trained using transfer learning methods,incorporating the ECA attention mechanism and ASPP module,and a small target network prediction layer is added to enhance the accuracy of detecting deformation interference fringes.The improved YOLOv5s achieves an average accuracy of 94.6%,surpassing YOLOv5s,SSD,Faster RCNN,YOLOv3,and YOLOv7 by 2.4%,5.7%,4.4%,2.7%,and 3.2%,respectively.The F1 Score reaches 89.9%,indicating increases of 3.9%,6.9%,17.7%,2.4%,and 2.6%,respectively.The accuracy of detecting deformation interference fringes in the research area is 92.7%,with a false detection rate of 4.3%.Experimental results demonstrate that this method can not only accurately identify deformations in extensive mining areas,promptly identify disaster hazards,and evaluate and issue warnings,but also significantly enhance the efficiency of traditional InSAR deformation monitoring.
作者
王若松
张乐乐
韩文辉
李相磊
WANG Ruosong;ZHANG Lele;HAN Wenhui;LI Xianglei(College of Mechanical Engineering,Inner Mongolia University of Technology,Hohhot 010051,China;College of Information Engineering,Inner Mongolia University of Technology,Hohhot 010051,China;Inner Mongolia Key Laboratory of Radar Technology and Application,Inner Mongolia University of Technology,Hohhot 010051,China)
出处
《测绘科学》
CSCD
北大核心
2024年第3期127-136,共10页
Science of Surveying and Mapping
基金
国家自然科学基金项目(42061068)
自治区直属高校基本科研业务费项目(JY20220280)。
关键词
矿区形变
干涉条纹
YOLOv5s
迁移学习
mining deformation
interferometric fringes
YOLOv5s
transfer learning