期刊文献+

基于稀疏贝叶斯学习的GFDM系统联合迭代信道估计与符号检测

Iterative Channel Estimation and Symbol Detection for GFDM Systems Based on Sparse Bayesian Learning
下载PDF
导出
摘要 针对当前广义频分复用(Generalized Frequency Division Multiplexing,GFDM)系统时变信道估计精度低的问题,提出基于稀疏贝叶斯学习的GFDM系统联合信道估计与符号检测算法.具体地,采用无干扰导频插入的GFDM多重响应信号模型,在稀疏贝叶斯学习框架下,结合期望最大化算法(Expectation-Maximization,EM)和卡尔曼滤波与平滑算法实现块时变信道的最大似然估计;基于信道状态信息的估计值进行GFDM符号检测,并通过信道估计与符号检测的迭代处理逐步提高信道估计与符号检测的精度.仿真结果表明,所提算法能够获得接近完美信道状态信息条件下的误码率性能,且具有收敛速度快、对多普勒频移鲁棒性高等优点. In order to improve the accuracy of time-varying channel estimation in generalized frequency division multiplexing(GFDM)systems,a joint iterative channel estimation and symbol detection algorithm for GFDM systems using sparse Bayesian learning is proposed.Specifically,we use a GFDM multi-response signal model with non-interfering pilot insertion.Under the sparse Bayesian learning framework,we combine the expectation-maximization(EM)algorithm and the Kalman filter and smoothing algorithm to realize the maximum likelihood estimation of the block time-varying channel.Consequently,GFDM symbols are detected based on the estimated channel state information(CSI),and the accuracy of the channel estimation and symbol detection is progressively improved through the iterative processing of the channel estimation and symbol detection.Simulation results demonstrate that the proposed algorithm can achieve better bit error rate(BER)performance close to that under perfect CSI conditions,and it has the advantages of fast convergence speed and high robustness to Doppler frequency shift.
作者 王莹 于永海 郑毅 林彬 WANG Ying;YU Yong-hai;ZHENG Yi;LIN Bin(College of Information Science and Technology,Dalian Maritime University,Dalian,Liaoning 116026,China)
出处 《电子学报》 EI CAS CSCD 北大核心 2024年第5期1496-1505,共10页 Acta Electronica Sinica
基金 国家重点研发计划(No.2019YFE0111600) 国家自然科学基金(No.61971083,No.51939001)。
关键词 广义频分复用 时变信道估计 稀疏贝叶斯学习 期望最大化 卡尔曼滤波与平滑 generalized frequency division multiplexing(GFDM) time-varying channel sparse Bayesian learning expectation-maximization(EM) Kalman filtering and smoothing
  • 相关文献

参考文献3

二级参考文献22

  • 1黄安民.基于感知字典的稀疏重建算法研究[D].成都:电子科技大学,2011:1-3.
  • 2D L Donoho. Compressed sensing [ J ]. IEEE Transactions on Information Theory,2006,52(4) : 1289 - 1306.
  • 3T Agrawal, V Lakkundi, A Ca'iffm, et al. Compressed sensing for OFDM UWB systems[ A]. Radio and Wireless Symposium [C]. Phoenix,USA,2011. 190 - 193.
  • 4J L Paredes, G R Arce, Z Wang. Ullra-wideband compressed sensing:channel estimation[J] .IEEE Journal of Selected Top- ics in Sisal Processing,2007, 1(3) :383 - 395.
  • 5E Candes,J Romberg. Sparsity and incoherence in compressive sampling[J]. Inverse Problems, 2037,23 (3) : 969 - 985.
  • 6R Yah, Q Wan, L Y Wan, et al. Greedy approach to sparse multi-path channel estimation using sensing dictionary[J]. In- ternational Journal of Adaptive Control and Signal Processing, 2011,25(6) :544 - 553.
  • 7K Schnass, P Vandergheynst. Dictionary preconditioning for greedy algorithms[ J] .IEEE Transactions on Signal Process, 2008,56(5) : 1994 - 2002.
  • 8T T Do, L Gan, N Nguyen, et al. Sparsity adaptive matching pursuit algorithm for practical compressed sensing[ A]. Asilo- mar Conference on Signals, Systems, and Computers[ C]. Cali- fornia, USA, 2008.581 - 587.
  • 9D L Donoho,M Elad, V Temlyakov. Stable recovery of sparse overcomplete representations in the presence of noise [ J]. IEEE Transactions on Informations Theory, 2006, 52 ( 1 ) : 6 - 18.
  • 10E Cand;s,J Romberg, T Tao. Stable signal recovery from in- complete and inaccurate measurements [ J ]. Communications on Pure and Applied Mathematics,2006,59(8) : 1207 - 1223.

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部