摘要
针对当前交通场景下自监督单目深度估计存在特征表达能力弱、深度图局部细节模糊、深度估计精度低的问题,提出一种基于双注意力机制和自适应代价卷的自监督单目深度估计方法.该方法首先利用双注意力机制的特征提取网络,结合通道注意力和空间注意力,对提取的场景特征进行自适应加权,增强特征表达能力.其次,根据提取的全局特征自适应的构建代价卷,引导网络学习精细的深度特征,提升网络模型对深度图局部细节的学习能力,解决现有方法深度估计精度低的问题.在自动驾驶公开数据集KITTI、Cityscapes上的实验结果表明,本文方法优于目前主流方法.
Aiming at the problems of self-supervised monocular depth estimation in current traffic scenarios,such as weak feature expression ability,fuzzy local details of depth map and low accuracy of depth estimation,a self-supervised monocular depth estimation method based on dual attention mechanism and adaptive cost volume is proposed.Firstly,a dual attention mechanism combining channel attention and spatial attention is used to adaptively weight the extracted scene features to enhance the feature expression ability of the feature extraction network.Secondly,according to the adaptively constructed cost volume of extracting global features,the network is guided to learn fine depth features,which improves the learning ability of the network model for the local details of the depth map and solves the problem of low accuracy of existing depth estimation methods.Experimental results on public datasets KITTI and Cityscapes show that the proposed method is superior to the current mainstream methods.
作者
武港
刘威
胡骏
程帅
杨文兴
孙令岿
WU Gang;LIU Wei;HU Jun;CHENG Shuai;YANG Wen-xing;SUN Ling-kui(College of Information Science and Engineering,Northeastern University,Shenyang,Liaoning 110167,China;Reachauto,Shenyang,Liaoning 110179,China;College of Computer Science and Engineering,Northeastern University,Shenyang,Liaoning 110167,China)
出处
《电子学报》
EI
CAS
CSCD
北大核心
2024年第5期1670-1678,共9页
Acta Electronica Sinica
基金
辽宁省“兴辽人才计划”项目(No.XLYC1902029)
辽宁省“揭榜挂帅”科技重大专项项目(No.2022JH1/10400030)
国家自然科学基金(No.U22A2043)。
关键词
单目深度估计
自监督
注意力机制
自适应
代价卷
monocular depth estimation
self-supervision
attention mechanism
adaptive
cost volume