摘要
机器视觉技术在工业领域尤其是缺陷检测方面展现出显著的应用潜力,其不仅能够有效提升检测的精确度和效率,还在降低人力成本方面发挥着不可忽视的作用。为此,通过探索机器视觉技术在纸张缺陷检测上的应用实例,深入分析了其面临的挑战及未来发展方向。详细讨论了基于机器视觉的纸张缺陷智能检测算法,重点涵盖了图像的预处理、特征参数的提取,并对复杂纸病的识别技术进行了深入研究。通过对特定纸病样本的训练与测试,以及对支持向量机多分类器的优化,对几类典型纸病的检测分类实验,不仅证实了所提算法的实用性,还展现了其高效的检测能力。
Machine vision technology has shown significant application potential in the industrial field,especially in the field of defect detection,which can not only effectively improve the accuracy and efficiency of detection,but also play a non-negligible role in reducing labor costs.By exploring the application of machine vision technology in paper defect detection,this paper deeply analyzes the challenges and future development direction of machine vision technology.This paper discusses the paper defect detection algorithm based on machine vision in detail,focusing on image preprocessing,feature parameter extraction,and the recognition technology of complex paper disease.Through the training and testing of specific paper disease samples and the optimization of support vector machine multiple classifiers,the detection and classification experiments of several typical paper diseases not only confirm the practicability of the proposed algorithm,but also show its efficient detection ability.
作者
王炅
窦曼娟
WANG Jiong;DOU Manjuan(Shanxi Vocational College of Finance and Economics,Xianyang 712099,China)
出处
《造纸科学与技术》
2024年第4期101-104,共4页
Paper Science & Technology
基金
陕西省“十四五”教育科学规划2022年度课题(SGH22Y1540)
2023年陕西省中华职业教育社课题(ZJS202338)。
关键词
机器视觉技术
纸病
图像处理
改进HOUGH变换
支持向量机
machine vision technology
paper disease
image processing
improved hough transform
support vector machine