摘要
针对带钢表面缺陷检测中的漏检和精度较低问题,提出一种融合swin-transformer和坐标注意力(coordinate attention,CA)模块的改进YOLOv5模型检测方法。在YOLOv5模型的主干网络中引入swin-transformer特征提取模块,使主干网络更聚焦于图像全局特征信息的提取;在特征融合网络输出分支末端嵌入CA模块,进一步增强目标缺陷方向和位置信息的敏感度。研究结果表明:改进模型在NEU-DET数据集上的平均精度值(mAP)达到了77.6%,较原YOLOv5模型提高了3个百分点。改进模型提升了带钢表面缺陷检测精度,具有更好的缺陷检测能力。
Aiming at the problem of missing detection and low precision in strip surface defect detection,an improved YOLOv5 network model detection method combining swin-transformer and coordinate attention module(CA)is proposed.Firstly the swin-transformer module of feature extraction is introduced into the feature extraction backbone network of YOLOv5 to make it the backbone network more focused on extracting global feature information.Secondly,embed CA module at the end of the output branch of feature fusion network to further enhance the sensitivity of target defect direction and position information.The results show that the average precision value(mAP)of the improved network model on the NEU-DET data set reaches 77.6%,which is 3.0%higher than the original YOLOv5 network model.The improved network model improves the detection accuracy of strip surface defects and has better defect detection ability.
作者
陈万志
张春光
CHEN Wanzhi;ZHANG Chunguang(College of software,Liaoning Technical University,Huludao 125105,China)
出处
《辽宁工程技术大学学报(自然科学版)》
CAS
北大核心
2024年第3期359-365,共7页
Journal of Liaoning Technical University (Natural Science)
基金
国家重点研发计划项目(2018YFB1403303)
辽宁省教育厅高等学校基本科研项目(LJKZ0327)。