摘要
本文主要讨论一个非线性Gross-Pitaevskii方程在一维情形下的行波解,我们建立了与最小化问题相关的欧拉–拉格朗日方程,从而证明行波解的存在性,更准确地说,建立了由动量参数化的解族的存在性。
This article mainly discusses the traveling wave solution of a nonlinear Gross-Pitaevskii equation in one-dimensional case.We establish the Euler-Lagrange equation related to the minimization problem,which is crucial for proving the existence of traveling wave solutions.More precisely,the existence of a family of solutions parameterized by momentum is established.
作者
杨滨宾
Binbin Yang(College of Science,University of Shanghai for Science and Technology,Shanghai)
出处
《运筹与模糊学》
2024年第3期775-780,共6页
Operations Research and Fuzziology
关键词
行波解
非局部GP方程
非线性
Traveling Waves Solutions
Nonlocal GP Equation
Nonlinear